
ECON 609: Econometric Methods Spring 2023

Notes on Optimization

Zhan Gao 10/05/2023

Contents

1 Optimality Conditions 3

1.1 Unconstrained Optimization Problems . 3

1.2 Constrained optimization . 4

1.3 Lagrange Duality . 8

2 Numerical Algorithms 10

2.1 Gradient Descent . 10

2.2 Coordinate Descent . 15

2.3 Augmented Lagrangian Method . 19

2.4 Alternating Direction Method of Multipliers (ADMM) 21

2.5 Minorization-Maximization Algorithms . 22

2.6 Biconvexity and Alternating Minimization . 22

3 Implementation with Optimization Solvers 23

3.1 Example: Lasso . 24

3.2 Additional Example: Exponential/Logarithm Formulation 26

4 Optimization-Conscious Econometrics 27

5 Appendix 29

5.1 Convex Sets and Convex Functions . 29

1

• We focus on convex optimization problems with convex objective functions and convex con-

straints,

min
β
f (β) s.t. β ∈ C

where f : Rp 7→ R is a convex function and C ⊂ Rp is a convex constraint set.

– Appendix 5.1 gives a brief summary on the characterization and properties of convex

sets and functions. [BV04] offers a comprehensive treatment.

• Any Local minimum is also a global minimum.

Proof. Suppose β1 ∈ C is a local minimum, i.e. ∃ δ > 0 such that ∀β ∈ Bδ (β1) ∩ C, f (β) ≥
f (β1); β0 ∈ C is a global minimum with f (β1) > f (β0). Construct β̄ = λβ0+(1− λ)β1 with

λ = δ
2∥β1−β0∥ , then β̄ ∈ Bδ (β1) ∩ C by convexity of C. By convexity of f ,

f
(
β̄
)
≤ λf (β0) + (1− λ) f (β1) < f (β0) ,

which contradicts the assumption that β0 is a global minimum.

• A general convex optimization problem is often of the form

min
β∈Rp

f (β)

s.t. gj (β) ≤ 0, j = 1, 2, · · · ,m,

Aβ − b = 0,

(0.1)

where f , gj , j = 1, 2, · · · ,m, are convex functions and A ∈ Rq×p.

– The feasible set is characterized by sublevel sets of convex functions and affine sets.

2

1 Optimality Conditions

• To analyze and solve an optimization problem, we need to characterize the optimal solutions

by a system of equations and inequalities (optimality conditions).

1.1 Unconstrained Optimization Problems

• A general unconstrained nonlinear optimization problem

min
β∈Rp

f (β)

Proposition 1. Suppose that f : Rp 7→ R is continuously differentiable at β̄ ∈ Rp, and ∃ d ∈ Rp

such that ∇f(β̄)⊤d < 0, then ∃ ᾱ > 0 such that f
(
β̄ + αd

)
< f

(
β̄
)
, ∀α ∈ (0, ᾱ). In other words,

d is a descent direction at β̄.

Proof. ∃ ᾱ > 0 such that ∇f (x̄+ ad)⊤ d < 0 for α ∈ (0, ᾱ). ∀α ∈ (0, ᾱ),

f
(
β̄ + αd

)
= f

(
β̄
)
+ α∇f

(
β̄ + td

)⊤
d < f

(
β̄
)

for some t ∈ [0, α).

Corollary 1 (First order necessary condition for unconstrained optimization). Suppose

that f : Rp 7→ R is continuously differentiable at β̄ ∈ Rp. If β̄ is a local minimum, then ∇f
(
β̄
)
= 0.

In particular,
{
d ∈ Rp : ∇f(β̄)Td < 0

}
= ∅.

Proof. Choose d = −∇f
(
β̄
)
.

• The necessary condition is also sufficient for convex functions.

Proposition 2. Suppose that f : Rp 7→ R is convex on S and continuously differentiable at β̄ ∈ S
where S ⊂ Rp is an open convex set, then f

(
β̄
)
≤ f (β) ∀β ∈ S if and only if ∇f

(
β̄
)
= 0.

Proof. Use the characterization f (β) ≥ f
(
β̄
)
+∇f

(
β̄
)⊤ (

β − β̄
)
of differentiable convex functions.

• The key ingredients of the proof is that the convex function f is minorized by an affine

function. The result is ready to be extended to non-differentiable functions.

Definition 1. For a convex function f , a vector z is a subgradient of f at β̄ if f (β) ≥ f(β) +

z⊤
(
β − β̄

)
∀β ∈ Rp. The set of all subgradients of f at β̄ is call subdifferential, denoted by

∂f
(
β̄
)
.

• The subgradient z defines a non-vertical supporting hyperplane of epi (f) at (β, f (β)).

3

• Example 1: ∂f(β) =


{+1} if β > 0

{−1} if β < 0

[−1,+1] if β = 0

when f (β) = |β|.

• Example 2: ∂ ∥Θ∥∗ =
{
Z ∈ Rm×n : Z =

∑min{m,n}
j=1 zjujv

⊤
j , zj ∈ sign (σj (Θ))

}
where Θ ∈

Rm×n has the singular value decomposition Θ =
∑min{m,n}

j=1 σj (Θ)ujv
⊤
j , and σj (Θ) is the

j-th singular value of Θ.

Proposition 3. For any f : Rp 7→ R, f
(
β̄
)
≤ f (β) ∀β ∈ Rp if and only if 0 ∈ ∂f

(
β̄
)
.

• ∂f (β) may not be easy to compute. For nonconvex differentiable f , we may not have∇f (β) ∈
∂f (β).

Proposition 4 (Second order sufficient condition for unconstrained optimization). Sup-

pose that f : Rp 7→ R is twice continuously differentiable at β̄ ∈ Rp. If ∇f
(
β̄
)
= 0 and ∇2f (x̄) ≻ 0,

then β̄ is a local minimum.

1.2 Constrained optimization

• Consider a general optimization problem (not necessarily convex) with both equality and

inequality constraints,

min
β∈B

f (β)

s.t. gj (β) ≤ 0, j = 1, 2, · · · ,m1,

hk (β) = 0, k = 1, 2, · · · ,m2.

(1.1)

where B is an open nonempty subset of Rp. Denote the feasible set by

S = {β ∈ B : gj (β) ≤ 0, j = 1, 2, · · · ,m1, hk (β) = 0, k = 1, 2, · · · ,m2} .

• Assume f , gj , j = 1, 2, · · · ,m1 and hk, k = 1, 2, · · · ,m2 are continuously differentiable on S.

4

Theorem 1 (Fritz John necessary condition). Let β̄ ∈ S be a local mininum of (1.1). Then

∃ ρ ∈ R, λ ∈ Rm1, µ ∈ Rm2 such that

ρ∇f
(
β̄
)
+

m1∑
j=1

λj∇gj
(
β̄
)
+

m2∑
k=1

µk∇hk
(
β̄
)
= 0,

ρ, λj ,≥ 0, j = 1, 2, · · · ,m1,(
ρ, λ⊤, µ⊤

)⊤
̸= 0.

λjgj
(
β̄
)
= 0, j = 1, 2, · · · ,m1.

(1.2)

• Consider a special case where only one inequality constraint, g (β) ≤ 0 is present. The

Lagrangian condition becomes −∇f
(
β̄
)
= λ

ρ∇g
(
β̄
)
if ρ > 0, for any d ∈ Rp, −∇f

(
β̄
)⊤
d =

λ
ρ∇g

(
β̄
)⊤
d, i.e. feasibility and descent cannot be achieved simultaneously.

Proof of Theorem 1. The proof adopts the penalty function approach (see [Ber99] for details). The

proof adopts the penalty function approach (see (author?) [Ber99] for details). Define a sequence

of penalized problems,

min
β∈Bϵ(β̄)

F q(β) ≡ f(β) + q

2

m1∑
j=1

(
g+j (β)

)2
+
q

2

m2∑
k=1

(hk(β))
2 +

1

2
∥β − β̄∥22, (1.3)

where g+j (x) = max {gj(x), 0}, for j = 1, 2, · · · ,m1, and ϵ > 0 is chosen such that f
(
β̄
)
< f (β),

∀β ∈ Bϵ

(
β̄
)
∩ S. Let βq be the optimal to (1.3) with q, where q = 1, 2, · · · .

1. Show that βq → β̄ as q →∞.

5

Note that

f (βq) ≤ F q(βq) = f(βq)+
q

2

m1∑
j=1

(
g+j (β

q)
)2

+
q

2

m2∑
k=1

(hk(β
q))2+

1

2
∥βq− β̄∥22 ≤ F q

(
β̄
)
= f

(
β̄
)

(1.4)

where the last equality comes from feasibility of β̄. Divide (1.4) by q, we have

f (βq)

q
≤ F q(βq)

q
=
f(βq)

q
+

1

2

m1∑
j=1

(
g+j (β

q)
)2

+
1

2

m2∑
k=1

(hk(β
q))2 +

1

2q
∥βq − β̄∥22 ≤

f
(
β̄
)

q
.

f (βq) is bounded over Bϵ

(
β̄
)
and ∥βq − β̄∥22 ≤ ϵ2, q = 1, 2, · · · , then

lim
q→∞

m1∑
j=1

(
g+j (β

q)
)2

= lim
q→∞

(hk(β
q))2 = 0.

Let β̃ be a limit point of {βq}, then β̃ ∈ S ∩Bϵ

(
β̄
)
. By (1.4) and continuity of f ,

f
(
β̃
)
+

1

2
∥β̃ − β̄∥22 ≤ f

(
β̄
)
,

and by local optimality of β̄, f
(
β̄
)
≤ f

(
β̃
)
. As a result, β̄ = β̃.

2. For large q, βq ∈ int
(
Bϵ

(
β̄
))
, then by Corollary 1, ∇F q (βq) = 0.

3. Compute 1

0 = ∇F q (βq) = ∇f (βq) +
m1∑
j=1

(
qg+j (βq)

)
∇gj (βq) +

m2∑
k=1

(qhk (β
q))∇hk (βq) + βq − β̄. (1.5)

For q = 1, 2, · · · , let

δq =

√√√√1 +

m1∑
j=1

(
qg+j (βq)

)2
+

m2∑
k=1

(qhk (βq))
2,

and ρq = 1
δk
, λqj =

qg+j (βq)

δq , and µqk = qhk(β
q)

δq for j = 1, 2, · · · ,m1 and k = 1, 2, · · · ,m2.

By construction the sequence
(
ρq, λq⊤, µq⊤

)⊤
is bounded. By Bolzano-Weierstrass theorem,

there exists a subsequence converges to
(
ρ, λ⊤, µ⊤

)⊤
as q →∞.

4. Let J = {j : λj > 0}, then for large q, λqjλj > 0 for j ∈ J , which, by definition λqj =
qg+j (βq)

δq ,

implies that gj (β
q) > 0. By feasibility, gj

(
β̄
)
≤ 0, βq → β̄ and by continuity of g, we have

gj
(
β̄
)
= 0 for j ∈ J .

1Use the fact d
dx

(max {0, x})2 = 2max {0, x}.

6

Theorem 2 (Karush–Kuhn–Tucker Necessary Conditions). Let β̄ ∈ S be a local minimum

of (1.1). Let J =
{
j : gj

(
β̄
)
= 0
}
, and suppose that

{
∇gj

(
β̄
)}

j∈J ∪
{
∇hk

(
β̄
)}m2

k=1

are linearly independent. Then ∃ λ ∈ Rm1, µ ∈ Rm2 such that

∇f
(
β̄
)
+

m1∑
j=1

λj∇gj
(
β̄
)
+

m2∑
k=1

µk∇hk
(
β̄
)
= 0,

λj ,≥ 0, j = 1, 2, · · · ,m1,

λjgj
(
β̄
)
= 0, j = 1, 2, · · · ,m1.

(1.6)

Remark 1. The condition {
∇gj

(
β̄
)}

j∈J ∪
{
∇hk

(
β̄
)}m2

k=1

are linearly independent is a constraint qualification condition.

A counterexample:

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1,

(x1 − 1)2 + (x2 + 1)2 ≤ 1.

The feasible set is a singleton, {(1, 0)}. The KKT conditions[
1

0

]
+ 2v1

[
x1 − 1

x2 − 1

]
+ 2v2

[
x1 − 1

x2 + 1

]
= 0

has no solution at (1, 0).

Theorem 3. Let β̄ ∈ S be a local minimum of (1.1), where gj is convex, j = 1, 2, · · · ,m1 and hk

is affine, k = 1, 2, · · · ,m2. Let J =
{
j : gj

(
β̄
)
= 0
}
. Suppose the Slater condition is satisfied,

i.e. ∃β′ ∈ S such that gj (β
′) for j ∈ J . Then β̄ satisfied the KKT conditions (1.6).

• Slater condition with convex constraints form the constraints qualification condition.

Theorem 4. Let β̄ ∈ S be a local minimum of (1.1), where gj is concave, j = 1, 2, · · · ,m1 and hk

is affine, k = 1, 2, · · · ,m2. Then β̄ satisfied the KKT conditions (1.6).

• This implies that KKT conditions are necessary for linearly constrained problems.

• KKT conditions are sufficient for optimality for convex problems.

Theorem 5 (Karush–Kuhn–Tucker sufficient conditions for convex problems). Consider

the constrained optimization problem (1.1), where f , gj are convex on B, j = 1, 2, · · · ,m1 and hk

7

is affine, k = 1, 2, · · · ,m2, i.e. it reduces to the convex optimization problem (0.1). Suppose that(
β̄, λ̄, µ̄

)
satisfies the KKT conditions

gj
(
β̄
)
≤ 0, j = 1, 2, · · · ,m1,

hk
(
β̄
)
= 0, k = 1, 2, · · · ,m2,

∇f
(
β̄
)
+

m1∑
j=1

λ̄j∇gj
(
β̄
)
+

m2∑
k=1

µ̄k∇hk
(
β̄
)
= 0,

λ̄j ,≥ 0, j = 1, 2, · · · ,m1,

λ̄jgj
(
β̄
)
= 0, j = 1, 2, · · · ,m1,

(1.7)

then β̄ is a global minimum of (1.1).

Remark 2. Under mild conditions on the functions, the optimality conditions can be generalized

to non-differentiable function by replacing gradients with subdifferentials.

1.3 Lagrange Duality

• Consider
v∗P = min

β∈B
f (β)

s.t. gj (β) ≤ 0, j = 1, 2, · · · ,m1,

hk (β) = 0, k = 1, 2, · · · ,m2.

(P)

where B is an open nonempty subset of Rp.

• Define the Lagrangian function L : Rp × Rm1 × Rm2

L (β, λ, µ) = f (β) +

m1∑
j=1

λjgj (β) +

m2∑
k=1

µkhk (β)

= f(β) + λ⊤G (β) + µ⊤H (β) .

(1.8)

• Observe that (P) is equivalent to

inf
β∈B

sup
λ∈Rm1

+ ,µ∈Rm2

L (β, λ, µ) (1.9)

which follows from

sup
λ∈Rm1

+ ,µ∈Rm2

L (β, λ, µ) =

f(beta) if G(β) ≤ 0, H(β) = 0

+∞ otherwise

8

• For any β̄ ∈ Rp,
(
λ̄, µ̄

)
∈ Rm1

+ × Rm2 ,

inf
β∈B

L
(
β, λ̄, µ̄

)
≤ L

(
β̄, λ̄, µ̄

)
≤ sup

λ∈Rm1
+ ,µ∈Rm2

L
(
β̄, λ, µ

)
.

• Then

sup
λ∈Rm1

+ ,µ∈Rm2

inf
β∈B

L (β, λ, µ) ≤ inf
β∈B

sup
λ∈Rm1

+ ,µ∈Rm2

L (β, λ, µ) = v∗P . (1.10)

• The R.H.S. is equivalent to (P). Define the L.H.S. as the Lagrangian dual of (P),

v∗D = sup
λ∈Rm1

+ ,µ∈Rm2

ψ (λ, µ) , (D)

where

ψ (λ, µ) = inf
β∈B

L (β, λ, µ)

is the dual value function.

• The value function ψ (λ, µ) is the pointwise infimum of affine functions, so it is concave

regardless of the convexity of (P).

Theorem 6 (Weak duality). Let β̄ ∈ Rp be feasible for (P) and
(
λ̄, µ̄

)
∈ Rm1 × Rm2 be feasible

for (D). Then we have

ψ
(
λ̄, µ̄

)
≤ f

(
β̄
)
.

• Strong duality, v∗D = v∗P , does not hold in general.

Definition 2.
(
β̄, λ̄, µ̄

)
∈ Rp×Rm1×Rm2 is a saddle point of the Lagrangian function L associated

with (P) if the following conditions hold:

(i) β̄ ∈ B.

(ii) λ̄ ≥ 0.

(iii) ∀β ∈ B, and (λ, µ) ∈ Rm1
+ × Rm2, we have

L
(
β̄, λ, µ

)
≤ L

(
β̄, λ̄, µ̄

)
≤ L

(
β, λ̄, µ̄

)
. (1.11)

Theorem 7.
(
β̄, λ̄, µ̄

)
∈ Rp×Rm1 ×Rm2 is a saddle point of the Lagrangian function L associated

with (P) if and only if the duality gap between (P) and (D) is 0 and β̄ and
(
λ̄, µ̄

)
are the optimal

solution to (P) and (D), respectively.

• See [HTW15, Exercise 5.4]. Essentially the first inequality in (1.11) implies feasibility of β̄

and complementary slackness, which can be used to derive a contradiction, together with the

second inequality, if we suppose ∃ β̃ such that f
(
β̃
)
< f

(
β̄
)
.

9

• A saddle point implies

sup
λ∈Rm1

+ ,µ∈Rm2

inf
β∈B

L (β, λ, µ) ≥ ψ
(
λ̄, µ̄

)
= f

(
β̄
)
≥ inf

β∈B
sup

λ∈Rm1
+ ,µ∈Rm2

L (β, λ, µ) = v∗P .

Together with (1.10), we have

sup
λ∈Rm1

+ ,µ∈Rm2

inf
β∈B

L (β, λ, µ) = inf
β∈B

sup
λ∈Rm1

+ ,µ∈Rm2

L (β, λ, µ) .

Theorem 8 (A speical case of Sion’s minimax theoreom). Let L be the Lagrangian function asso-

ciated with (P). Suppose that

(i) B is compact and convex.

(ii) For each β ∈ B, (λ, µ) 7→ L (β, λ, µ) is continuous and concave on Rm1
+ × Rm2.

(iii) For each (λ, µ) ∈ Rm1
+ × Rm2, β 7→ L (β, λ, µ) is continuous and convex on B.

Then we have

sup
λ∈Rm1

+ ,µ∈Rm2

min
β∈B

L (β, λ, µ) = min
β∈B

sup
λ∈Rm1

+ ,µ∈Rm2

L (β, λ, µ) .

• Characterization of saddle points.

Theorem 9 (Saddle point optimality conditions).
(
β̄, λ̄, µ̄

)
∈ Rp×Rm1 ×Rm2 is a saddle point of

the Lagrangian function L associated with (P) if and only if

(i) (Primal Feasibility) β̄ ∈ B, G
(
β̄
)
≤ 0, H (x̄) = 0.

(ii) (Dual feasibility) λ̄ ≥ 0.

(iii) (Lagrangian optimality) β̄ = argminβ∈B L
(
β, λ̄, µ̄

)
(iv) (Complementary slackness) λ̄⊤G

(
β̄
)
= 0.

• Suppose (P) is reduced to a convex problem (0.1) where f , gj are convex and hj are affine.

Then the saddle point optimality conditions are equivalent to the KKT conditions. The

strong duality can be retained by the constraint qualification conditions, Slater’s condition

for example.

2 Numerical Algorithms

2.1 Gradient Descent

2.1.1 Unconstrained Gradient Descent

• Gradient descent is an iterative algorithm for solving ∇f (β∗) = 0

10

• Iterate

βt+1 = βt − st∇f
(
βt
)
, (2.1)

for t = 0, 1, 2, . . ., where st > 0 is a step size parameter.

• Direction of descent: −∇f
(
βt
)

• In general, the class of descent methods is based on choosing a direction ∆t ∈ Rp such that〈
∇f

(
βt
)
,∆t

〉
< 0, then update

βt+1 = βt + st∆t for t = 0, 1, 2, . . .

• Newton’s method for twice continuously differentiable functions,

∆t = −
(
∇2f

(
βt
))−1∇f

(
βt
)

– a Newton step (with stepsize one) amounts to exactly minimizing the second-order Taylor

approximation

– quadratic rate of convergence

– Computing the Hessian matrix is expensive for large-scale problems.

• Quasi-Newton methods approximate the Hessian matrix by a positive definite matrix Bt,

then update

∆t = −Bt∇f
(
βt
)

• Choose step-size

– Exact line search: st = argmins f
(
βt + s∆t

)
– Limited minimization rule: st = argmin

s∈[0,1]
f
(
βt + s∆t

)
– Backtracking line search: Given parameters α ∈ (0, 0.5] and γ ∈ (0, 1) and an initial

stepsize s = 1, repeat s← γs until the Armijo condition

f
(
βt + s∆t

)
≤ f

(
βt
)
+ αs

〈
∇f

(
βt
)
,∆t

〉
is satisfied.

11

2.1.2 Projected Gradient Descent

• Problems that involve additional side constraints

• Gradient descent (2.1) can be viewed as the combination of a local linear approximation to

f combined with a quadratic smoothness term

βt+1 = argmin
β∈Rp

{
f
(
βt
)
+
〈
∇f

(
βt
)
, β − βt

〉
+

1

2st
∥∥β − βt∥∥2

2

}
. (2.2)

• Projected gradient descent

βt+1 = argmin
β∈C

{
f
(
βt
)
+
〈
∇f

(
βt
)
, β − βt

〉
+

1

2st
∥∥β − βt∥∥2

2

}
.

12

2.1.3 Proximal Gradient Method

• The objective function can be decomposed as a convex and differentiable component g and a

convex but nondifferentiable component h,

min
β
f (β) = g (β) + h (β)

• Cannot use gradient methods; Do not want to use subgradient methods due to speed concerns

• If h has the property that the proximal mapping (prox-operator) of h is easy to compute,

we can use the proximal gradient method

• The proximal mapping (prox-operator) of a convex function h is defined as

proxh(x) := argmin
θ∈Rp

{
1

2
∥x− θ∥22 + h(θ)

}
(2.3)

– h(x) = 0: proxh(x) = x

– h(x) = IC(x) =

0 if x ∈ C

∞ otherwise
, proxh(x) = argmin

u∈C
∥u− x∥22 = PC(x)

– h (x) = ∥x∥1 , then proxh (x)i =


xi − 1 xi ≥ 1

0 |xi| ≤ 1

xi + 1 xi ≤ 1

– f (x) = ∥x∥2 , then proxtf (x) =


(
1− t

∥x∥2

)
x ∥x∥2 ≥ t

0 otherwise

– f(x) = 1
2x

⊤Ax+ b⊤x+ c, proxtf (x) = (I + tA)−1(x− tb) with A ≻ 0.

– If h is closed and convex, then proxh (x) exists (closed and bounded sublevel sets) and

is unique (strong convexity)

– Subgradient characterization:

u = proxh (x)⇔ x− u ∈ ∂h (u)⇔ h(z) ≥ h(u) + (x− u)⊤(z − u),∀z

which can be derived from the first order condition.

– u = PC(x)⇔ (x− u)⊤(z − u) ≤ 0;∀z ∈ C

– Nonexpansiveness (Lipschitz continuous with L = 1) : if u = proxh (x), v =

proxh (y), then

(u− v)⊤ (x− y) ≥ ∥u− v∥22 ⇒ ∥x− y∥2 ≥ ∥u− v∥2

13

– Moreau decomposition:

x = proxf (x) + proxf∗ (x)∀x

where f∗(y) = supx∈dom f

(
y⊤x− f(x)

)
is the conjugate of f , which is convex regardless

of the convexity of f .

• Recall (2.2) and consider the generalized gradient update

βt+1 = argmin
β∈Rp

{
g
(
βt
)
+
〈
∇g
(
βt
)
, β − βt

〉
+

1

2st
∥∥β − βt∥∥2

2
+ h(β)

}

• The update rule is equivalent to

βt+1 = proxsth
(
βt − st∇g

(
βt
))

([HTW15, Exercise 5.7]) This can be easily shown by the subgradient characterization

• Projected gradient descent in the form of proximal mapping,

βt+1 = proxIC
(
βt − st∇g

(
βt
))

• Example (Lasso). h (θ) = λ |θ|1 and g(β) = 1
2N ∥y −Xβ∥

2
2. Then proximal gradient update

βt+1 = Sstλ
(
βt − st 1

N
X⊤ (y −Xβt))

2.1.4 Accelerated Gradient Methods

• Gradient descent exhibit ”zig-zagging” behavior dependent on the objective functions. For

example, f(x) = (1/2)
(
x21 + γx22

)
with large γ .

• Nesterov (2007) proposed the class of accelerated gradient methods that use weighted com-

binations of the current and previous gradient directions.

14

• Initialize β0 = θ0. Update according to

βt+1 = θt − st∇f
(
θt
)

θt+1 = βt+1 +
t

t+ 3

(
βt+1 − βt

)
• Replace the gradient update step if there is nondifferentiable h evolved,

βt+1 = proxsth
(
θt − st∇g

(
θt
))

2.2 Coordinate Descent

• Coordinate descent is an iterative algorithm that updates from βt to βt+1 by choosing a

single coordinate to update, and then performing a univariate minimization over this coordi-

nate.

• If coordinate k is chosen,

βt+1
k = argmin

βk

f
(
βt1, β

t
2, . . . , β

t
k−1, βk, β

t
k+1, . . . , β

t
p

)
• A sufficient condition for convergence: the objective function is continuously differentiable

and strongly convex in each coordinate.

• Separability condition: f has the additive decomposition f (β1, . . . βp) = g (β1, . . . βp) +∑p
j=1 hj (βj)

– g is convex and differentiable and hj is convex and possibly nondifferentiable.

– Example: Lasso

• Tseng (2001) gives a more general and intuitive condition for convergence of CD

Define

f ′(β; ∆) := lim inf
s↓0

f(β + s∆)− f(β)
s

regularity condition If f ′
(
β; ej

)
≥ 0, ∀, j = 1, 2, · · · , p, then f ′(β; ∆) ≥ 0, ∀∆ ∈ Rp.

– Separability implies regularity.

– An example without separability but with regularity:

h (β1, . . . , βp) = |β|⊤P |β| =
p∑

j,k=1

|βj |Pjk |βk|

where P ⪰ 0.

15

– An example that fails regularity: Fussed Lasso. Here the non-differentiable component

takes the form h(β) =
∑p

j=1 |βj − βj−1|.

• Example (Lasso). The optimality condition,

− 1

N

N∑
i=1

(
yi − β0 −

p∑
k=1

xikβk

)
xij + λsj = 0

where sj ∈ sign (βj).

Define partial residual r
(j)
i = yi −

∑
k ̸=j xikβ̂k, the solution,

β̂j =
Sλ
(

1
N

∑N
i=1 r

(j)
i xij

)
1
N

∑N
i=1 x

2
ij

.

where Sλ(θ) = sign(θ)(|θ| − λ)+ is the soft-thresholding operator.

For centered and standardized data,

β̂j = Sλ
(
β̃j

)
where β̃j is the solution of the univariate regression problem of partial residual r

(j)
i on xij .

Efficiency Improvement:

16

– (Naive updating) Note that

1

N

N∑
i=1

xijr
(j)
i =

1

N

N∑
i=1

xijri + β̂j .

Computing the inner product ⟨xj , r⟩ is O (N), and updating ri is also O (N). A full

cycle through all p variables costs O (pN).

– (Covariance updating) ⟨xj , r⟩ can be further decomposed as

N∑
i=1

xijri = ⟨xj ,y⟩ −
∑

k||β̂k|>0

⟨xj ,xk⟩ β̂k.

⟨xj ,y⟩ can be computed offline. ⟨xj ,xk⟩ can be computed whenever xk enters the model.

If no new variable enters, O (p); otherwise, O (pN). This is efficiency when N ≫ p.

– (Warm Starts) For (decreasing) sequence {λ0}Lℓ=0 with

λ0 =
1

N
max

j
|⟨xj ,y⟩| ,

solution β̂ (λℓ) is typically a good starting point for β̂ (λℓ+1).

glmnet generate a geometric sequence from λ0 to λL = ϵλ0 with ϵ and L specified by

the user.

lambda_min <- lambda_min_ratio * lambda_max

lambda_seq <- exp(seq(log(lambda_max), log(lambda_min), length.out = nlambda))

∗ Cross-validation based on λ̂ (λℓ)

∗ A modified least angle regression (LAR) algorithm can generate the solution path

of Lasso. Details see [HTW15, Section 5.6].

17

– (Active-set convergence) Find the active set A after one iteration start from β̂ (λℓ−1).

Upon convergence with only A, check 1
N |⟨xj , r⟩| < λℓ for omitted variables.

– (Strong set convergence) Define

S =

{
j : | 1

N
⟨xj , r⟩ |> λℓ − (λℓ−1 − λℓ)

}
and then restrict attention only variables in S.

The algorithm can be generalized to have heterogeneous penalty weights,

λ

p∑
j=1

γjPα (βj) .

Adaptive Lasso can be implemented by glmnet with a weight argument specified.

glmnet(x, y, lambda = lambda * sum(w) / p, penalty.factor = w)

• Example (Logistic Regression) The log-likelihood,

ℓ (β0, β) =
1

N

N∑
i=1

[
yi ·
(
β0 + xTi β

)
− log

(
1 + eβ0+xT

i β
)]
.

Given the current estimate
(
β̃0, β̃

)
, we derive the second order Taylor approximation around(

β̃0, β̃
)
,

ℓQ (β0, β) = −
1

2N

N∑
i=1

wi

(
zi − β0 − xTi β

)2
+ C

(
β̃0, β̃

)
,

18

where C is a constant, p̃ (xi) = p
(
xi; β̃0, β̃

)
, wi = p̃ (xi) (1− p̃ (xi)), and zi = β̃0 + xTi β̃ +

yi−p̃(xi)
p̃(xi)(1−p̃(xi))

.

The Newton update is obtained by minimizing ℓQ, which is a simple weighted least square.

Apply the coordinate descent to the quadratic approximaiton with regularization,

min
(β0,β)∈Rp+1

{−ℓQ (β0, β) + λPα(β)} .

• Speed comparison:

2.3 Augmented Lagrangian Method

• Consider

minβ∈Rp f(β) subject to Aβ = c

where A ∈ Rd×p.

• Gradient projection method

βt+1 = arg min
β:Aβ=c

∥∥β − (βt − st∇f (βt))∥∥2
2
.

• Projection onto the affine set Aβ = c,

P{β:Aβ=c}(u) = arg min
β:Aβ=c

∥β − u∥22 = u+A⊤
(
AA⊤

)−1
(c−Au),

can be expensive unless d≪ p, or AA⊤ = I.

• Define the augmented Lagrangian function

Lρ (β, µ) = f (β) + µ⊤ (Aβ − c) + ρ

2
∥Aβ − c∥22 .

19

The augmented Lagrangian method (ALM) is (starting with µ0 = 0),

βt+1 = argmin
β
Lρ

(
β, µt

)
µt+1 = µt + ρ

(
Aβt+1 − c

)
.

• ALM method is the proximal point method applied to the dual problem.

– Proximal point method

βt+1 = proxstf
(
βt
)
= argmin

u

(
f(u) +

1

2st
∥∥u− βt∥∥2

2

)
– The Lagrangian function is

L (β, µ) = f (β) + µ⊤ (Aβ − c)

– Dual problem is

max
µ

inf
β
L (β, µ) = max

µ

{
−f∗

(
−A⊤µ

)
− c⊤µ

}
= min

µ

{
f∗
(
−A⊤µ

)
+ c⊤µ

}
– Let h (µ) = f∗

(
−A⊤µ

)
+ c⊤µ,

proxρh (µ) = argmin
a

(
h(a) +

1

2ρ
∥a− µ∥22

)
Optimality condition:

1

ρ
(a− µ) + c ∈ A∂f∗

(
−A⊤a

)
– Write the augmented Lagrangian as

argmin
β
f (β) + µ⊤ (Aβ − c) + ρ

2
∥Aβ − c∥22

=argmin
β

{
f (β) +

ρ

2

∥∥∥∥Aβ − c+ µ

ρ

∥∥∥∥2
2

}

Optimality condition:

−A⊤ [µ+ ρ (Aβ − c)] ∈ ∂f (β)

→ β ∈ ∂f∗
(
A⊤ [µ+ ρ (Aβ − c)]

)
→a=µ+ρ(Aβ−c)

1

ρ
(a− µ) ∈ Aβ ∈ A∂f∗

(
A⊤a

)
– Hence

proxρh (µ) = µ+ ρ
(
Aβ̂ − c

)
20

where β̂ = argminβ Lρ (β, µ).

• Three variants of L1-regularized problems,

– Lasso

minβ∈Rp
1

2N
∥y −Xβ∥22 + λ∥β∥1

Default algorithm: Proximal gradient method

– Constrained form

minβ∈Rp
1

2N
∥y −Xβ∥22 s.t. ∥β∥1 ≤ t

Default algorithm: Projected gradient method

– Basis pursuit

min
β
∥β∥1 s.t. Xβ = y

Default algorithm: Augmented Lagrangian method

2.4 Alternating Direction Method of Multipliers (ADMM)

• Comprehensive survey: [BPC+11]

• Consider the problem,

minβ∈Rm,θ∈Rn f(β) + g(θ) subject to Aβ +Bθ = c

where f and g are convex, A ∈ Rd×m and B ∈ Rd×n.

• A special case:

minβ∈Rm,θ∈Rn f(β) + g(β)

by letting θ = β.

• Augmented Lagrangian,

Lρ(β, θ, µ) := f(β) + g(θ) + ⟨µ,Aβ +Bθ − c⟩+ ρ

2
∥Aβ +Bθ − c∥22

• ADMM
βt+1 = argmin

β∈Rm
Lρ

(
β, θt, µt

)
θt+1 = argmin

θ∈Rn
Lρ

(
βt+1, θ, µt

)
µt+1 = µt + ρ

(
Aβt+1 +Bθt+1 − c

)
,

• Example (Lasso)

minβ∈Rp
1

2N
∥y −Xβ∥22 + λ∥θ∥1 s.t. β − θ = 0

21

The ADMM updates

βt+1 =
(
XTX+ ρI

)−1 (
XTy + ρθt − µt

)
θt+1 = Sλ/ρ

(
βt+1 + µt/ρ

)
µt+1 = µt + ρ

(
βt+1 − θt+1

)
The Ridge regression update for β requires an initial SVD of X implemented offline which

requires O
(
p3
)
operations. Subsequent iterations cost O (Np), which is similar to coordinate

descent.

2.5 Minorization-Maximization Algorithms

• The objective functin f is possibly nonconvex

• A function Ψ majorizes f at β if f(β) ≤ Ψ(β, θ) for all θ ∈ Rp with equality holds when

β = θ.

• MM algorithm: βt+1 = argmin
β∈Rp

Ψ
(
β, βt

)
, t = 0, 1, 2, · · ·

• f
(
βt
)
= Ψ

(
βt, βt

)
≥ Ψ

(
βt+1, βt

)
≥ f

(
βt+1

)
2.6 Biconvexity and Alternating Minimization

• A function f (α, β) is biconvex if α 7→ f(α, β) is convex and β 7→ f(α, β) is also convex.

• Example: f(α, β) = (1− αβ)2 for |α| ≤ 2, |β| ≤ 2

• Alternate Convex Search (ACS)

22

(a) Initialize
(
α0, β0

)
at some point in C

(b) For iterations t = 0, 1, 2, · · · ,

(i) Fix β = βt, update αt+1 = argminα∈Cβt f
(
α, βt

)
(ii) Fix α = αt+1, update βt+1 = argminβ∈Cαt+1 f

(
αt+1, β

)
• Only objective values converge to some limit point. The solution sequence may not converge.

(α∗, β∗) ∈ C is a partial optimum if

f (α∗, β∗) ≤ f (α∗, β) for all β ∈ Cα∗

f (α∗, β∗) ≤ f (α, β∗) for all α ∈ Cβ∗

• Example (Mixed membership in Grouped panel data models).

min
θ,αgt,γig

Q (θ, α, γ) =
1

NT

N∑
i=1

T∑
t=1

(yit − x′itβ −
∑
g

αtgγig)
2

s.t.
∑
g

γig = 1, ∀i, γig ∈ [0, 1], ∀i, g

3 Implementation with Optimization Solvers

• R’s optimization infrastructure has been constantly improving. R Optimization Task View

gives a survey of the available CRAN packages.

• Defacto R package: optimx

• General purpose nonlinear programming solver NLOPT

Example (OLS).

f <- function(b, y, x){sum((y - x %*% b)^2)}
s <- function(b, y, x){-2 * t(x) %*% (y - x %*% b)}
opts <- list(algorithm = "NLOPT_LD_SLSQP", xtol_rel = 0.0001)

res_nloptr <- nloptr::nloptr(x0 = c(0, 0, 0), eval_f = f,

eval_grad_f =s, opts = opts, y = y, x = x)

NLOPT algorithms:

– Nelder-Mead (NLOPT LN NELDERMEAD): A derivative-free simplex method. It searches a

local minimum by reflection, expansion and contraction.

– BFGS (NLOPT LD LBFGS): A quasi-Newton algorithm.

– SQP (NLOPT LD SLSQP) : A sequential quadratic programming (SQP) algorithm for non-

linearly constrained gradient-based optimization.

23

http://cran.r-project.org/web/views/Optimization.html
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#slsqp

– For more options, see NLOPT Algorithms.

• Disaplined convex programming solver CVX

• Commercial optimization solver MOSEK specialized for convex problems

• Commercial optimization solver Gurobi specialized for convex problems and integer program-

ming

3.1 Example: Lasso

• Recall the standard Lasso problem is of the form

min
β

1

n
∥y −Xβ∥22 + λ∥β∥1

• Use CVXR, the R wrapper of the CVX solver, to solve the Lasso problem.

CVXR

beta <- Variable(p)

obj <- sum_squares(y - x %*% beta) / (2 * n) + lambda * p_norm(beta, 1)

prob <- Problem(Minimize(obj))

result <- solve(prob, verbose = FALSE)

Time difference of 0.2630119 secs2

result <- solve(prob, solver = "MOSEK", verbose = FALSE)

Time difference of 0.09962988 secs

• Since the Lasso problem is well-studied and we know the problem is convex, it is desirable to

directly call MOSEK to skip the convexity check steps. To invoke MOSEK, we need to transform

the problem to a standard form of conic programming that the solver can recognize.

• We first deal with ∥β∥1.

– The p × 1 vector β can be decomposed into a positive part β+ = (max {0, βj})pj=1 and

a negative part β− = (max {0,−βj})pj=1, so that β = β+ − β− and ∥β∥1 = e′β+ + e′β−,

where e is the p× 1 vector with all elements equal to 1.

• Next, we transform the l2-norm ∥y −Xβ∥22 to a second-order conic constraint.

2Use simulated data with n = 100 and p = 20.

24

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

– Consider a minimization problem with ∥ν∥22 in the objective function. We can use a new

parameter t to replace it and add a conic constraint ∥ν∥22 ≤ t, which is equivalent to∥∥(ν, t−1
2

)∥∥
2
≤ t+1

2 .

– Thus we obtain a standard conic constraint ∥(ν, s)∥2 ≤ r, where s =
t−1
2 and r = t+1

2 .

• We rewrite the Lasso problem as

min
θ

λ
(
e′β+ + e′β−

)
+
t

n
s.t. ν = y −X

(
β+ − β−

)
, ∥(v, s)∥2 ≤ r, s =

t− 1

2
, r =

t+ 1

2

where θ = (β+, β−, ν, t, s, r). This problem is of the standard form of second-order conic

programming.

• In matrix notation, the Lasso problem is

min
θ

λ
(
e′β+ + e′β−

)
+
t

n

s.t.

 X −X In 0n×3

02×(n+2p)
−1

2 1 0

−1
2 0 1

 θ =
 y

−1
2

1
2

 , ∥(v, s)∥2 ≤ r, β+, β− ≥ 0

where the inequality for a vector is taken elementwisely. The following annotated R code

snippet implements the matrix form.

P = list(sense = "min")

Linear coefficients in objective

P$c = c(rep(lambda, 2*p), rep(0, n), 1/n, 0, 0)

The matrix in linear constraints

A = as.matrix.csr(X)

A = cbind(A, -A, as(n, "matrix.diag.csr"), as.matrix.csr(0, n, 3))

A = rbind(A, cbind(as.matrix.csr(0, 2, 2*p + n),

as.matrix.csr(c(-.5, -.5, 1, 0, 0, 1), 2, 3)))

P$A = as(A,"CsparseMatrix")

Right-hand side of linear constraints

P$bc = rbind(c(y, -0.5, 0.5), c(y, -0.5, 0.5))

Constraints on variables

P$bx = rbind(c(rep(0, 2 * p), rep(-Inf, n), rep(0, 3)), c(rep(Inf, 2*p+n+3)))

25

Conic constraints

P$cones = matrix(list("QUAD", c(n+2*p+3, (2*p+1):(2*p+n), n+2*p+2)), 2, 1)

rownames(P$cones) = c("type", "sub")

result = mosek(P, opts = list(verbose = verb))

xx = resultsolitr$xx

coef = xx[1:p] - xx[(p+1):(2*p)]

Time difference of 0.006147146 secs

glmnet(x, y, lambda = lambda)

Time difference of 0.003031015 secs

3.2 Additional Example: Exponential/Logarithm Formulation

In limited dependent variable models it is common to see exponential, logarithm or power terms

in objective functions. These nonlinear functions can be easily formulated with power cones and

exponential cones.

Example 1 (Poisson maximum likelihood estimator). The Poisson maximum likelihood estimator

is defined as

min
β
− 1

n

n∑
i=1

(
yix

′
iβ − exp

(
x′iβ
))

where yi ∈ R and xi ∈ Rp are observed data, and β is the parameter of interests. This optimization

problem involves the component exp
(∑p

j=1 xijβj

)
, which is non-separable. Define vi = x′iβ, and

the objective becomes

min
v,β

1

n

n∑
i=1

(−yivi + exp (vi)) .

We introduce the auxiliary variable ti to replace exp (vi) in the objective and the constraint ti ≥
exp (vi) is equivalent to (ti, 1, vi) ∈ Kexp . The estimator can be then formulated as

min
t,v,β

1

n

n∑
i=1

(−yivi + ti) s.t. vi = x′iβ, (ti, 1, vi) ∈ Kexp, for each i

Example 2 (Logistic regression). Consider the simplest logistic regression

max
β

n∑
i=1

yi
(
x′iβ
)
− log

(
1 + exp

(
x′iβ
))
. (3.1)

26

Introducing ti to replace the softplus function in the objective and ϕi = x′iβ, we turn (3.1) into

max
ti,ϕi,β

n∑
i=1

(yiϕi + ti) s.t.− log (1 + exp (ϕi)) ≥ ti, ϕi = x′iβ for each i.

Notice that − log (1 + exp (ϕi)) ≥ ti is equivalent to exp (ϕi + ti) + exp (ti) ≤ 1. Introducing ui and

vi, we transform it into

ui + vi ≤ 1, (ui, 1, ϕi + ti) ∈ Kexp, (vi, 1, ti) ∈ Kexp,

and then we reach the standard form

max
θ

[
1n y 01×(2n+p)

]
θ

s.t.

[
0n×n In 0n×2n −X
0n×2n In In 0n×p

]
θ
=

≤

[
0n×1

1n

]
(ui, 1, ϕi + ti) ∈ Kexp, (vi, 1, ti) ∈ Kexp, for each i

where θ = (t, ϕ, u, v, β).

• More details see [KM14] and [GS21].

• More code snippets, see https://github.com/zhan-gao/convex prog in econometrics

4 Optimization-Conscious Econometrics

Textbook

• Course offered by Prof. Guillaume Allaire Pouliot

Examples

• Linear Programming

– [CT07, Shi16] Dantzig Selector and L∞-norm relaxation

– [BDL22] matching

– [KBJ78, Koe05] Quantile Regression

– [CCG16] Vector quantile regression via optimal transport

• Quadratic Programming

– [SSX22] ℓ2-relaxation relaxation in forecast combination

– [HSS22]

• Conic Programming

27

https://github.com/zhan-gao/convex_prog_in_econometrics
https://sites.google.com/site/guillaumeallairepouliot/oce-quarter-course?authuser=0

– [KM14, GS21] Lasso variants.

– [SSP16] Classifier-Lasso

• Polynomial Programming

– [Lee22] Short-T dynamic panel

• Semidefinite Programming

– [Aue22] Approximation of cut-norm

• Mixed Integer Programming

– [BKM16] Best subset selection

– [CL18] Max-score estimation

– [KT18] Optimal treatment rule

– [Pou23] Instrumental variable quantile regression (IVQR)

28

5 Appendix

5.1 Convex Sets and Convex Functions

5.1.1 Convex Set

• convex cone: set contains all conic conbinations of points in the set.

– conic combination of x1 and x2 is x = θ1x1 + θ2x2∀θ1, θ2 ≥ 0

• norm cone: {(x, t) | ∥x∥ ≤ t}

• Convexity preserving operations - establish convexity by operations that preserves con-

vexity from simple convex sets

– Intersection

– Affine function: image and inverse image of convex sets under f (x) = Ax + b are

convex

∗ {x|x1A1 + x2A2 + · · ·+ xnAn ⪯ B} with Ai, B ∈ Sp

– Perspective function: image and inverse image of convex sets under P : Rn+1 →
Rn, P (x, t) = x

t are convex

– Linear-fractional function: image and inverse image of convex sets under f : Rn →
Rm, f (x) = Ax+b

c⊤x+d
are convex

5.1.2 Convex Function

• Examples:

– x log x on R++

– f (X) = tr
(
A⊤X

)
+ b =

∑n
i=1

∑m
j=1AijXij + b

– f (X) = ∥X∥2 = σmax (X) =
(
λmax

(
X⊤X

)) 1
2

• Restriction to a line: f convex if and only if g : R→ R

g (t) = f (x+ tν) , dom (g) = {t|x+ tν ∈ dom (f)}

is convex in t for any x ∈ dom (f) , ν ∈ Rn

– f (X) = − log detX where dom (f) = Sn++

∗ make use of X
1
2

(
I − tX− 1

2V X− 1
2

)
X

1
2

• Fisrt order condition: f (y) ≥ f (x) +∇f (x)⊤ (y − x)∀x, y ∈ dom (f)

• Second order condtion: ∇2f (x) ⪰ 0∀x ∈ dom (f)

29

– f (x) = log
∑n

k=1 expxk

– f (x) = (
∏n

k=1 xk)
1/n on Rn

++

• Epigraph convex iff f convex

• f convex ⇒sublevel sets convex

Convexity preserving operations

• Perspective: perspective of f is g (x, t) = tf
(
x
t

)
. g is convex if f is convex.

• Conjugate: The conjugate of a function f : f∗ (y) = supx
{
y⊤x− f (x)

}
is always convex

even if f is not.

• Pointwise maximum: f (x) = max {f1 (x) , f2 (x) , · · · , fm (x)} is convex if f is convex.

• Composition with affine function: f (Ax+ b) is convex if f is convex.

– log barrier
∑

log
(
bi − a⊤i x

)
– norm of affine function ∥Ax+ b∥

• Pointwise supreme: f (x, y) is convex in x for each y ∈ A, then g (x) = supy∈A f (x, y) is

convex.

– support function SC (x) = supx∈C y
⊤x is convex

– f (x) = supy∈c ∥x− y∥

– λmax (X) = sup∥y∥2=1 y
⊤Xy

• Minimization: if f (x, y) is convex in (x, y) and C is a convex set, then g (x) = infy∈C f (x, y)

is convex.

Remark 3. In pointwise supreme, the condition does not include the convexity of C and f is

required to be convex in only x for each y ∈ C.

• Composition with scalar functions: f (x) = h (g (x))

f is convex if: g convex, h convex, h nondecreasing or g concave, h convex, h nonincreasing

• Vector composition: f (x) = h (g (x)) = h (g1 (x) , · · · , gk (x))
f is convex if: gi convex, h convex, h nondecreasing in each argument or gi concave, h convex,

h nonincreasing in each argument

–
∑m

i=1 log gi (x) is concave

– log
∑m

i=1 exp gi (x) is convex

30

5.1.3 Subgradient

• Subgradients defines a non-vertical supporting hyperplane to the epigraph epi (f) at (x, f (x)).

• ∂f (x) is closed. If x ∈ intdom (f), then ∂f (x) is nonempty and bounded.

• Monotonicity: (u− v)⊤ (x− y) ≥ 0 ∀x, y, u ∈ ∂f (x) , v ∈ ∂f (y)

The followings are basic subdifferential rules and examples:

• ∂ |x| =


1 x > 0

[−1, 1] x = 0

−1 x < 0

• ∂ ∥x∥2 =

 x
∥x∥2

x ̸= 0

{g| ∥g∥2 ≤ 1} x = 0

• h (x) = α1f1 (x) + α2f2 (x) with αi ≥ 0, then ∂h (x) = α1∂f1 (x) + α2∂f2 (x)

• h (x) = f (Ax+ b), then ∂h (x) = A⊤∂f (Ax+ b)

• Pointwise Maximum:Choose any active k and any subgradient fk at x.

– l1-norm: f (x) = ∥x∥1 = maxs∈{−1,1}n s
⊤x

• Pointwise Superem: f (x) = supα∈A fα (x) where fα is convex in x for any α. Find any

active β and choose g ∈ ∂fβ (x)

– f (x) = λmax (A (x)) = sup∥y∥2=1 y
⊤A (x) y

• Minimization: f (x) = infy h (x, y), h jointly convex in (x, y). Find ŷ that minimizes h (x̂, y)

and find subgradient (g, 0) ∈ ∂h (x̂, ŷ).

– f (x) = infy∈C ∥x− y∥2 where C is a closed convex set.

∂f (x̂) =

0 x̂ ∈ C
x̂−P (x̂)

∥x̂−P (x̂)∥2
x̂ /∈ C

• Composition: f (x) = h (f1 (x) , · · · , fk (x)), h convex, non-increasing, fi convex

find z ∈ ∂h (x̂) and gi ∈ ∂fi (x̂), then g =
∑

i zigi ∈ ∂f (x̂)

• Optimal Value function: if λ̂, ν̂ are optimal dual variables for corresponding û, v̂, then(
−λ̂,−ν̂

)
∈ ∂h (û, v̂).

• Expectation: f (x) = Eh (x, u) where u random, h convex in x for every u

choose a function u→ g (u) with g (u) ∈ ∂xh (x̂, u), then g = Eug (u) ∈ ∂f (x̂)

31

5.1.4 Proximal Gradient Method

xk = argmin
x

1

2tk

∥∥∥x− (xk−1 − tk∇g
(
xk−1

))∥∥∥2 + h (x)

= proxtkh

(
xk−1 − tk∇g

(
xk−1

))
Through Moreau decomposition, proximal mapping is connected with conjugate functions.

5.1.5 Conjugate function

• Fenchel’s inequality: f (x) + f∗ (x) ≥ x⊤y ∀x, y

• If f is closed and convex, then f∗∗ (x) = f (x) ∀x

• If f is closed and convex, then y ∈ ∂f (x)⇔ x ∈ ∂f∗ (y)⇔ x⊤y = f (x) + f∗ (y).

• Examples:

– f (X) = − log detX, f∗ (Y) = − log det (−Y)− n

∗ ∇⟨X,Y ⟩ = Y , ∇ log detX = X−1,
〈
Y, (−Y)−1

〉
= −n

– Conjugate of indicator function of a convex set C is support function of C, f∗ (y) =

supx∈C y
⊤x

– Conjugate of norm function is indicator of unit dual norm ball

Proximal mapping

• If h is closed and convex, then proxh (x) exists (closed and bounded sublevel sets) and is

unique (strong convexity)

• Subgradient characterization:

u = proxh (x)⇔ x− u ∈ ∂h (u)

• Nonexpansiveness (Lipschitz continuous with L = 1) : if u = proxh (x), v = proxh (y),

then

(u− v)⊤ (x− y) ≥ ∥u− v∥22 ⇒ ∥x− y∥2 ≥ ∥u− v∥2

• Moreau decomposition:

x = proxf (x) + proxf∗ (x)∀x

• Extended Moreau decomposition: for λ > 0,

x = proxλf (x) + λproxλ−1f∗

(x
λ

)
32

Examples

• h (x) = IC(x) , then proxh (x) = PC (x)

• h (x) = ∥x∥1 , then proxh (x)i =


xi − 1 xi ≥ 1

0 |xi| ≤ 1

xi + 1 xi ≤ 1

• f (x) = ∥x∥2 , then proxtf (x) =


(
1− t

∥x∥2

)
x ∥x∥2 ≥ t

0 otherwise

Calculus rules

• Separable Sum: f

((
x

y

))
= g (x) + h (y), proxf

((
x

y

))
=

(
proxg (x)

proxh (y)

)

• Scaling and translation of argument with λ ̸= 0: f (x) = g (λx+ a), proxf (x) =
1
λ

(
proxλ2g (λx+ a)− a

)
• Scalar multiplication with λ > 0: f (x) = λg

(
x
λ

)
, proxf (x) = λproxλ−1g

(
x
λ

)
• Linear funtion: f (x) = g (x) + a⊤x, proxf (x) = proxg (x− a)

• Quadratic function with µ > 0: f (x) = g (x)+ µ
2 ∥x− a∥

2
2, proxf (x) = proxθg (θx+ (1− θ) a)

where θ = 1
1+µ

• Composition with affine mapping: f (x) = g (Ax+ b) where AA⊤ =
(
1
α

)
I, then

proxf (x) =
(
I − αA⊤A

)
x+ αA⊤ (proxα−1g (Ax+ b)− b

)

33

References

[Aue22] Eric Auerbach. Testing for differences in stochastic network structure. Econometrica,

90(3):1205–1223, 2022.

[BDL22] Ido Bright, Arthur Delarue, and Ilan Lobel. Reducing marketplace interference bias via

shadow prices. arXiv preprint arXiv:2205.02274, 2022.

[Ber99] Dimitri Bertsekas. Nonlinear programming. Athena Scientific, 2nd edition, 1999.

[BKM16] Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a

modern optimization lens. The Annals of Statistics, 44(2):813–852, 2016.

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Dis-

tributed optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends® in Machine learning, 3(1):1–122, 2011.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[CCG16] Guillaume Carlier, Victor Chernozhukov, and Alfred Galichon. Vector quantile regres-

sion: An optimal transport approach. The Annals of Statistics, 44(3):1165 – 1192, 2016.

[CL18] Le-Yu Chen and Sokbae Lee. Best subset binary prediction. Journal of Econometrics,

206(1):39–56, 2018.

[CT07] Emmanuel Candes and Terence Tao. The Dantzig selector: Statistical estimation when

p is much larger than n. The Annals of Statistics, 35(6):2313 – 2351, 2007.

[GS21] Zhan Gao and Zhentao Shi. Implementing convex optimization in R: Two econometric

examples. Computational Economics, 58(4):1127–1135, 2021.

[HSS22] Yu-Wei Hsieh, Xiaoxia Shi, and Matthew Shum. Inference on estimators defined by

mathematical programming. Journal of Econometrics, 226(2):248–268, 2022.

[HTW15] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with

sparsity: The Lasso and Generalizations. Chapman & Hall/CRC, 2015.

[KBJ78] Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica, pages 33–50,

1978.

[KM14] R. Koenker and I. Mizera. Convex optimization in R. Journal of Statistical Software,

60(5):1–23, 2014.

[Koe05] Roger Koenker. Quantile regression, volume 38. Cambridge university press, 2005.

34

[KT18] Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maxi-

mization methods for treatment choice. Econometrica, 86(2):591–616, 2018.

[Lee22] Wooyong Lee. Identification and estimation of dynamic random coefficient models, 2022.

Working paper.

[Pou23] Guillaume A Pouliot. Instrumental variables quantile regression with multivariate en-

dogenous variable. Unpublished Working Paper, 2023.

[Shi16] Zhentao Shi. Econometric estimation with high-dimensional moment equalities. Journal

of Econometrics, 195(1):104–119, 2016.

[SSP16] Liangjun Su, Zhentao Shi, and Peter CB Phillips. Identifying latent structures in panel

data. Econometrica, 84(6):2215–2264, 2016.

[SSX22] Zhentao Shi, Liangjun Su, and Tian Xie. ℓ2-Relaxation: With Applications to Forecast

Combination and Portfolio Analysis. The Review of Economics and Statistics, pages

1–44, 11 2022.

35

	Optimality Conditions
	Unconstrained Optimization Problems
	Constrained optimization
	Lagrange Duality

	Numerical Algorithms
	Gradient Descent
	Coordinate Descent
	Augmented Lagrangian Method
	Alternating Direction Method of Multipliers (ADMM)
	Minorization-Maximization Algorithms
	Biconvexity and Alternating Minimization

	Implementation with Optimization Solvers
	Example: Lasso
	Additional Example: Exponential/Logarithm Formulation

	Optimization-Conscious Econometrics
	Appendix
	Convex Sets and Convex Functions

