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Stationarity
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Stationarity

A time series is essentially an chronically ordered collection of random variables.

 is a random draw from population of an infinite series

There is dependence within the series

A single realization is observed... but statistical analysis requires repeated patterns

Recall: analysis of cross-sectional data relies on independence across observations

y1, y2, ⋯ , yT

⋯ , y−1, y0, y1, y2, ⋯

4 / 88



Stationarity

Roughly speaking, stationarity requires the "patterns" to be invariant across time.

Strict stationarity

 for any , .

Weak stationarity

constant mean  and variance  for all 

Autocovariance  depends only on .

Strict stationarity implies weak stationarity if first two moments exist.

Pr (Yt1
,Yt2

, ⋯ ,Ytk) = Pr (Yt1+h,Yt2+h, ⋯ ,Ytk+h) t1, ⋯ , tk h

μ = E[Yt] σ2 = Var(Yt) t

γ(h) = Cov(Yt,Yt+h) h
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Stationarity

Wold Decomposition (Wold, 1938)

Any trend-stationary process  can be decomposed into a deterministic trend

component and a schochastic stationary process component:

where  and , and  is a serially uncorrelated process

defined by inoovations,  where ,  and

.

{yt}

yt = dt +
∞

∑
j=0

αjϵt−j,

a0 = 1 ∑∞
j=0 α

2
j < K < ∞ {ϵt}

ϵt = yt − E[yt|It−1] E[ϵ2
t |I ] = σ2

E[ϵtds] = 0

It−1 = {yt−1, yt−2, ⋯}
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Stationarity

The key to stationarity:  decays fast enough (exponentially decay) so that it is

absolutely summable (i.e., ).

The autocovariance function: 

Long run variance: 

The corresponding autocorrelation: 

{αj}

∑∞
j=0

∣∣αj∣∣ < ∞

γ(h) = Cov(yt, yt+h) = ∑∞
j=0 αjαj+hσ

2

lrvar(yt) = var [limT→∞ ∑T

t=1 yt] = ∑∞
h=−∞ |γ(h)|1

√T

lrvar(yt) ≤ σ2
∞

∑
h=0

∞

∑
j=0

∣∣ajaj+h∣∣ ≤ σ2( ∞

∑
j=0

∣∣aj∣∣)
2

< ∞

∑∞
j=0 |ρ(h)| ≤ ∑∞

j=0
∣∣αj∣∣ < ∞
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Autocovariance and Autocorrelation

Useful to check these statistics as first exploratory steps

Moment estimators:

.

Asymptotic properties; Ref. Pesaran (2015) Ch. 14.1 and 14.2.

Yule-Walker equations; Ref. Pesaran (2015) p.280; AR(2) as a example

Taking expectation of both sides:

Solve for  and .

μ̂T = ȳT = (y1 + y2 + … + yT )1
T

γ̂T (h) = ∑T

t=h+1 (yt − ȳT ) (yt−h − ȳT )1
T

ρ̂T (h) =
γ̂T (h)

γ̂(0)

yt−hyt = ϕ1yt−hyt−1 + ϕ2yt−hyt−2 + yt−hεt

γ(h) − ϕ1γ(h − 1) − ϕ2γ(h − 2) = { 0 h > 0
σ2 h = 0

ϕ1 =
γ(0)γ(1)−γ(1)γ(2)

γ2(0)−γ2(1)
ϕ2 =

γ(0)γ(2)−γ2(1)

γ2(0)−γ2(1)
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Autocovariance and Autocorrelation

set.seed(123)

y <- arima.sim(n = 1000, list(ar = c(0.5, 0.3)))

acf(y, type = "covariance", main = "ACF of AR(2) process")
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Autocovariance and Autocorrelation

acf(y, type = "correlation", main = "Autocorrelation of AR(2) process")
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Partial Autocorrelation Function (PACF)

pacf(y, main = "PACF of AR(2) process")
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Box-Pierce and Ljung-Box Test

Test: 

Box and Pierce (1970)  statistic 

Poor finite sample performance

Ljung and Box (1978) 

H0 : ρ(1) = ρ(2) = ⋯ = ρ(m) = 0

Q Qm = T ∑m

h=1 ρ̂
2(h) →d χ

2(m)

Q∗
m = T (T + 2)∑m

h=1 ρ̂2(h) →d χ
2(m)1

T−h
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Box-Pierce and Ljung-Box Test

Box.test(y, lag = 10, type = "Box-Pierce")

## 

##     Box-Pierce test

## 

## data:  y

## X-squared = 1795.5, df = 10, p-value < 2.2e-16

Box.test(y, lag = 10, type = "Ljung-Box")

## 

##     Box-Ljung test

## 

## data:  y

## X-squared = 1805.3, df = 10, p-value < 2.2e-16
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ARIMA
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Autoregressive Moving Average (ARMA) Process

ARMA(p,q) process: 

Write the model in lag operator (backshift operator) notation:

yt = ϕ1yt−1 + ⋯ + ϕpyt−p + ϵt + θ1ϵt−1 + ⋯ + θqϵt−q

ϕ(L)yt = θ(L)ϵt

ϕ(L) = 1 − ϕ1L − ⋯ − ϕpL
p

θ(L) = 1 + θ1L + ⋯ + θqL
q
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Autoregressive Moving Average (ARMA) Process

To invert the AR component: the roots of  are outside the unit

 where 

The latter is equivalent to ,  with 

and  for 

The solution is given in terms of roots of 

 for 

ARMA(p,q)  MA 

Other the other hand, the invertibility of the MA component  a natural approach for esi.

Truncation as order 

Estimate s by Ordinary Least Squares (OLS)

ϕ(z) = 0

yt = α(L)θ(L)ϵt α(L)ϕ(L) = 1

αi = ϕ1αi−1 + ⋯ + ϕpαi−p i = 1, 2, ⋯ α0 = 1

αi = 0 i < 0

ϕ(z) = ∏p

j=1(1 − λjz) = 0

(1 − λL)−1 = 1 + λL + λ2L2 + ⋯ |λ| < 1

⇝ (∞)

⇝

yt ≈ β1yt−1 + β2yt−2 + ⋯ + βSyt−S + ϵt where β(L)ϕ(L) = 1

S

β
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Autoregressive Moving Average (ARMA) Process

Estimation of AR process: Yule-Walker / OLS / MLE

they are asymptotically equivalent

Due to violation of strict exogeneity, OLS has a small sample bias (Details in Pesaran (2015)

Ch. 14.5 and references therein)

stationary AR(1) with normally distributed errors (Kendall (1954) and Marriott and Pope

(1954))

Bias-correction

Orcutt and Winokur (1969) based on the formula above

Higher order autoregressive model - shaman and Stine (1988)

(Half) Jackknife bias-correction - Quenouille (1949)

E(ϕ̂OLS)− ϕ = − + O( )1 + 3ϕ

T

1

T 2
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Simulation: Bias of OLS estimator for the AR(1)

set.seed(100)

n_vec <- c(10, 20, 30, 50, 100)

num_n <- length(n_vec)

rho <- 0.5

R <- 2000

rho_hat_mat <- matrix(NA, R, num_n) # Initialize result container

for(i in 1:num_n) {

    n <- n_vec[i]

    for(r in 1:R){

        y <- arima.sim(model = list(order = c(1, 0, 0), ar = rho), n = n)

        rho_hat_mat[r, i] <- as.numeric(

            ar(y, order.max = 1, aic = FALSE, method = "ols")$ar

        )

    }

}
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Simulation: Bias of OLS estimator for the AR(1)

data.frame(

    n = n_vec,

    bias = colMeans(rho_hat_mat) - rho,

    formula = -(1 + 3 * rho) / n_vec

)

##     n        bias     formula

## 1  10 -0.25481602 -0.25000000

## 2  20 -0.12655888 -0.12500000

## 3  30 -0.08788927 -0.08333333

## 4  50 -0.04736005 -0.05000000

## 5 100 -0.02640868 -0.02500000

You may try other values of  and  to complete the picture.ϕ T
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Integrated Time Series

(Loosely speaking) Weakly dependent time series is called integrated of order 0 (I(0))

Integrated of order 1 (I(1)): the first difference  is a I(0) process

Integrated of order d (I(d)): the d-th difference  is a I(0) process

In real financial and economic applications, we rarely witness time series of integration

order higher than 2

ARIMA(p, d, q) : After -th differencing, the time series becomes a stationary ARMA(p,

q)  process

Δyt = yt − yt−1

Δdyt

d
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ARIMA(p,d,q)

Simulate data from ARIMA model: arima.sim(list(order = c(p,d,q), ar = , ma = )

y <- arima.sim(n = 1000, list(order = c(2, 1, 2), ar = c(0.5, 0.3), ma = c(0.5, 0.3)))

plot(y, type = "l", main = "ARIMA(2,1,2) process")
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ARIMA(p,d,q)

y_dff <- diff(y)

plot(y_dff, type = "l", main = "Differenced ARIMA(2,1,2) process")
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ARIMA(p,d,q)

Estimation: arima(y, order = c(p,d,q))

arima(y, order = c(2, 1, 2))

## 

## Call:

## arima(x = y, order = c(2, 1, 2))

## 

## Coefficients:

##          ar1     ar2     ma1     ma2

##       0.4307  0.3671  0.5369  0.2767

## s.e.  0.0957  0.0894  0.0927  0.0347

## 

## sigma^2 estimated as 0.9558:  log likelihood = -1397.29,  aic = 2804.59
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ARIMA(p,d,q)

In practice, the order is unknown: Model selection by information criteria

forecast::auto.arima(y)

## Registered S3 method overwritten by 'quantmod':

##   method            from

##   as.zoo.data.frame zoo

## Series: y 

## ARIMA(2,1,2) 

## 

## Coefficients:

##          ar1     ar2     ma1     ma2

##       0.4307  0.3671  0.5369  0.2767

## s.e.  0.0957  0.0894  0.0927  0.0347

## 

## sigma^2 = 0.9597:  log likelihood = -1397.29

## AIC=2804.59   AICc=2804.65   BIC=2829.13 24 / 88



ARIMA(p,d,q)

forecast::checkresiduals(forecast::auto.arima(y))

## 

##     Ljung-Box test

## 

## data:  Residuals from ARIMA(2,1,2)

## Q* = 1.8579, df = 6, p-value = 0.9323

## 

## Model df: 4.   Total lags used: 10
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Real data: S&P 500 index

SPX <- quantmod::getSymbols("^GSPC",auto.assign = FALSE, from = "2000-01-01")$GSPC.Clo

plot(SPX)
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Real data: S&P 500 index

lSPX <- log(SPX)

plot(xts::xts(lSPX), main = "Log S&P 500 index")
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Real data: S&P 500 index

forecast::auto.arima(lSPX)

## Series: lSPX 

## ARIMA(1,1,0) with drift 

## 

## Coefficients:

##           ar1  drift

##       -0.1008  2e-04

## s.e.   0.0126  1e-04

## 

## sigma^2 = 0.0001491:  log likelihood = 18586.31

## AIC=-37166.62   AICc=-37166.62   BIC=-37146.41
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Real data: S&P 500 index

SPX_ret <- diff(lSPX)[-1]

plot(SPX_ret, type = "l", main = "S&P 500 returns")
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Real data: S&P 500 index

forecast::auto.arima(SPX_ret)

## Series: SPX_ret 

## ARIMA(1,0,0) with non-zero mean 

## 

## Coefficients:

##           ar1   mean

##       -0.1008  2e-04

## s.e.   0.0126  1e-04

## 

## sigma^2 = 0.0001491:  log likelihood = 18586.31

## AIC=-37166.62   AICc=-37166.62   BIC=-37146.41

30 / 88



Detrending: Hodrick-Prescott filter
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Detrending: Hodrick-Prescott filter

The Hodrick-Prescott (HP) filter is a curve fitting procedure proposed by Hodrick and

Prescott (1997) to estimate the trend path of a series.

 is decomposed into a trend component and a cyclical component

The HP filter:

where  is a tuning parameter.

Conventional choice:  for quarterly data,  for annual data.

yt

yt = y∗
t + ct

min
y⋆

1 ,y⋆
2 ,…y⋆

T

[ T

∑
t=1

(yt − y⋆
t )

2
+ λ

T−1

∑
t=2

(Δ2y⋆
t+1)

2]
λ

λ = 1600 λ = 100
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Boosted HP filter

Phillips, P. C., & Shi, Z. (2021). Boosting: Why you can use the HP filter. International

Economic Review, 62(2), 521-570.

Iterate the HP filter to fully remove the trend

data(IRE) # load the data 'IRE'

lam <- 100 # tuning parameter for the annual data

# raw HP filter

bx_HP <- bHP::BoostedHP(IRE, lambda = lam, iter= FALSE)

# stopping stands for the condition of the terminal of iteration

# by BIC

bx_BIC <- bHP::BoostedHP(IRE, lambda = lam, iter= TRUE, stopping = "BIC")

# by ADF

bx_ADF <- bHP::BoostedHP(IRE, lambda = lam, iter= TRUE, stopping = "adf")
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Boosted HP filter

#Dynamic Demonstration

plot(bx_ADF, iteration_location = "upright", interval_t = 0.8)
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Unit Roots
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Random walks

Related to efficient market hypothesis (EMH)

Samuelson (1965, Nobel 1970), Fama (1970, Nobel 2013)

Fama v.s. Thaler

A simple model of random walk (with no drift) is the AR(1):  with

AR(1) coefficient  (unit root) and no drift 

eps <- rnorm(n); y <- cumsum(eps)

Et[yt+h] = E[yt+h|yt, yt−1, . . . ] = yt

yt = yt−1 + ϵt

ϵt ∼ iid(0,σ2)

ρ = 1 μ = 0
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Random walks: Properties

For simplicity, initial value 

Shocks are permenant: 

Nonstationarity: ; ; 

Compared to stationary AR(1)

The best mean prediction  for 

Mean reversion  as 

Diminishing shocks 

Usual LLN and CLT don't apply in the presence of unit roots

y0 = 0

yt = ϵ1 + ϵ2 + ⋯ + ϵt

E[yt] = 0 var[yt] = tσ2 cov[yt, ys] = min(t, s)σ2

Et[yt+h] = E[yt+h|yt, yt−1, . . . ] = yt

Et[yt+h] = βhyt h > 0

Et[yt+h] → 0 h → ∞

yt = ∑t−1
q=0 ρ

qεt−q
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Unit root Test

Consider , 

Want to test the null hypothesis  against the alternative 

Let  be the OLS estimator of 

The -statistic: 

 where 

In the cross-sectional setup / stationary time series: -statistic 

In the presence of unit root: the limiting distribution of  is non-standard

yt = ρyt−1 + ϵt ϵt ∼ i. i. d. (0,σ2)

H0 : ρ = 1 H1 : |ρ| < 1

ρ̂ =
T −1 ∑T

t=1 yt−1yt

T −1 ∑T

t=1 y
2
t−1

ρ

t tρ =
ρ̂−1

σ̂ρ̂

σ̂ρ̂ = s2
T

(∑T

t=1 y
2
t−1)−1 s2

T
= ∑T

t=1 (yt − ρ̂yt−1)2.1
T−1

t → N(0, 1)

tρ
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Alternative representation

Subtract  on both sides,

where .

The hypotheses become  against .

The -statistic from OLS estimation of , , is exactly the same as 

As a historical convention, most statistical software, such as the urca  package in R,

adopt the  representation

yt−1

Δyt = τyt−1 + ϵt

τ = ρ − 1

H0 : τ = 0 H1 : τ < 0

t τ tτ tρ

τ
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Dickey-Fuller Test

Dicky and Fuller (1979, 1981) study the asymptotic distribution of the -statistic.

The limiting distribution of  is a stable distribution

non-standard: Unlike Bernoulli/uniform/normal/etc distribution, we don't have an

analytical form of the density of DF distrbution

It can be easily approximated by Monte Carlo simulation.

Steps:

1. Generate data under the null hypothesis 

2. Compute the -statistic 

3. Repeat 1. and 2. for  times, with  large enough (say 10,000 or 20,000)

4. Calculate the critical values (for ) by finding the empirical quantile of the  -

statistics

t

tρ

yt = yt−1 + ut

t tρ

R R

T R t
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Dickey-Fuller Test

DF_sim  generates the -statistics under  /  depending on 

DF_sim <- function(rho_0, n = 1000, num_rep = 20000) {

  test_stat <- rep(NA, num_rep)

  t0 <- Sys.time()

  for(r in 1:num_rep) {

      if (rho_0 == 1) {

          x <- cumsum(rnorm(n))

      } else {

          x <- arima.sim(model = list(order = c(1, 0, 0), ar = rho_0), n = n)

      }

      rho_hat <- lsfit(x[-n], x[-1], intercept = FALSE)$coefficients

      sigma2 <- mean((x[-1] - rho_hat * x[-n])^2) / (sum(x[-n]^2))

      test_stat[r] <- (rho_hat - rho_0) / sqrt(sigma2)

  }

  return(test_stat)

}

t H0 H1 ρ0
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Dickey-Fuller Test

t_stat_ur <- DF_sim(1)

p <- ggplot(data.frame(tstat = t_stat_ur), aes(x = tstat)) +

    geom_density(color = "#990000", fill = "#FFC72C", alpha = 0.5) +

    geom_vline(aes(xintercept = 0), color = "navyblue", linetype ="dashed")

quantile(t_stat_ur, c(0.025, 0.05, 0.95, 0.975)) # Critical values

##      2.5%        5%       95%     97.5% 

## -2.232765 -1.941602  1.312006  1.659953
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Dickey-Fuller Test

Compare with empirical distribution of -statistics with different 

t_stat_stat <- DF_sim(0.5)

t_stat_near_ur <- DF_sim(0.99)

df <- reshape2::melt(list("Unit Root" = t_stat_ur, "Stat" = t_stat_stat, "Nearly I(1)"

names(df) <- c("tstat", "type")

p <- ggplot(df, aes(x = tstat, fill = type, color = type)) +

    geom_density(alpha = 0.5) +

    stat_function(fun = dnorm, color = "black", linetype = "dashed", linewidth = 1 ) +

    geom_vline(aes(xintercept = 0), color = "navyblue", linetype ="dashed") +

    scale_fill_manual(breaks = c("Unit Root", "Stat", "Nearly I(1)"), values = c("#FFC

    scale_color_manual(breaks = c("Unit Root", "Stat", "Nearly I(1)"), values = c("#FF

t ρ0
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Dickey-Fuller Test
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Dicky-Fuller Test

Dickey-Fuller (DF) distribution

as  by Functional CLT (Ref. White (2001) Asymp. Theory for Econometricians),

where  is a standard Brownian motion.

Super consistency with rate of convergence  instead of the regular  rate

T (ρ̂ − 1) = ⇒
T −1 ∑T

t=1 Xt−1ut

T −2 ∑T

t=1 X
2
t−1

∫ 1
0
W(r)dW(r)

∫ 1
0

[W(r)]2dr

T → ∞

W(⋅)

T √T
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Dickey-Fuller Test

The limit distribution of :tρ

tρ ⇒
∫ 1

0
W (r) dW (r)

{∫ 1
0 [W (r)]2dr}1/2
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Dickey-Fuller Test

Implement DF test with mature packages

library(urca, quietly = TRUE)

n <- 100

y <- arima.sim( n = n, list(order = c(0,1,0) ) )

DFtest <- ur.df( y, type = "none", lags = 0 )

summary(DFtest)

One-sided test

The t-statistic is usually negative

Pay attention to the critical values

The more negative is the t-statistic, the stronger is the evidence of rejection
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Dickey-Fuller Test

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Test regression none 

Call:

lm(formula = z.diff ~ z.lag.1 - 1)

Residuals:

48 / 88



Dickey-Fuller Test

An example when the null is false

n <- 100

y <- arima.sim( n = n, list(ar = 0.5 ) )

DFtest <- ur.df( y, type = "none", lags = 0 )
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Dickey-Fuller Test

summary(DFtest)

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Test regression none 

Call:

lm(formula = z.diff ~ z.lag.1 - 1)

Residuals: 50 / 88



Dickey-Fuller Test

SPX <- quantmod::getSymbols("^GSPC",auto.assign = FALSE, from = "2000-01-01")$GSPC.Clo

lSPX <- log(SPX)

DFtest <- ur.df( lSPX, type = "none", lags = 0 )
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Dickey-Fuller Test

summary(DFtest)

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Test regression none 

Call:

lm(formula = z.diff ~ z.lag.1 - 1)

Residuals: 52 / 88



Estimation with Transformed Data

Judging stationary based on tests is subject to testing errors - pretesting issue

Many applied economists are inclined to transform a potentially nonstationary time

series into a stationary time series, in order to circumvent the inconvenience brought by

nonstationarity (stationarization)

To facilitate the stationarization, FRED assigns a transformation code (TCODE), as

recommended transformation of potentially nonstationary time series into

stationary ones.
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head(as.tibble(read.csv("./data/fred_md_data.csv"))[, 1:10])

## # A tibble: 6 × 10

##   sasdate   RPI W875RX1 DPCERA3M086SBEA CMRMTSPLx RETAILx INDPRO IPFPNSS IPFINAL

##   <chr>   <dbl>   <dbl>           <dbl>     <dbl>   <dbl>  <dbl>   <dbl>   <dbl>

## 1 Transf…    5       5              5          5       5     5       5       5  

## 2 7/1/19… 2711.   2538.            21.5   289368.  21423.   27.7    28.7    27.4

## 3 8/1/19… 2722.   2548.            21.6   287421.  21396.   27.8    29.0    27.7

## 4 9/1/19… 2739.   2565.            21.6   284734.  21343.   28.1    29.1    27.7

## 5 10/1/1… 2755.   2580.            21.6   292581.  21714.   28.2    29.3    27.9

## 6 11/1/1… 2760.   2585.            21.7   286944.  21470.   28.4    29.4    28.0

## # ℹ 1 more variable: IPCONGD <dbl>
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head(as.tibble(fbi::fredmd_description)[, 2:5])

## # A tibble: 6 × 4

##   tcode ttype                                          fred          description

##   <fct> <fct>                                          <chr>         <chr>      

## 1 5     First difference of natural log: ln(x)-ln(x-1) RPI           Real Perso…

## 2 5     First difference of natural log: ln(x)-ln(x-1) W875RX1       Real perso…

## 3 5     First difference of natural log: ln(x)-ln(x-1) DPCERA3M086S… Real perso…

## 4 5     First difference of natural log: ln(x)-ln(x-1) CMRMTSPLx     Real Manu.…

## 5 5     First difference of natural log: ln(x)-ln(x-1) RETAILx       Retail and…

## 6 5     First difference of natural log: ln(x)-ln(x-1) INDPRO        IP Index
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Estimation with Transformed Data

Is stationarization a sound practice?

Suppose  follows AR(1) process  where 

Take the first difference: . What happens if we regress  on ?

The OLS estimator of  is not only biased but also inconsistent to 

Note that .

When :

instead of .

The level data regression and the differenced data regression are about two different

relationships. One does not imply the other.

yt yt = ρyt−1 + ϵt 0 < ρ ≤ 1

Δyt = yt − yt−1 Δyt Δyt−1

yt − yt−1 = ρ(yt−1 − yt−2) + ϵt − ϵt−1

ρ ρ

cov(yt−1 − yt−2, ϵt − ϵt−1) = −σ2 ≠ 0

ρ = 1

ρ̂ = →p 0
T −1 ∑ ϵtϵt−1

T −1 ∑ ϵ2
t−1

1
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Extensions of Pure Random Walk

Random walk with drift

AR(1) with AR coefficient  and a non-zero drift :

where .

Assume initial value : 

linear deterministic trend + stochastic trend component (pure random wallk)

, ,  for 

ρ = 1 μ ≠ 0

yt = μ + yt−1 + ϵt

ϵt ∼ iid(0,σ2)

y0 = 0 yt = tμ + ∑t

s=1 ϵs

E[yt] = tμ var[yt] = tσ2 Et[yt+h] = hμ + yt h > 0
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Random Walk with Drift

Under the null hypothesis  and ,

this distribution is even more strongly skewed than that for the case without drift

for , 95% of the time the estimated  will be less than unity

the limit distribution of -statistic changes accordingly

joint test of  and  with Wald form of F test

μ = 0 ρ = 1

T (ρ̂ − 1) ⇒ =
∫ 1

0
W (r) dW (r) − W (1) ∫ 1

0
W (r) dr

∫ 1
0

[W (r)]2dr − [∫ 1
0
W (r) dr]2

∫ 1
0
W̄ (r) d

~
W (r)

∫ 1
0 [ ~

W (r)]
2
dr

T > 25 ρ̂

t

tρ = ⇒ .
ρ̂ − 1

σ̂ρ̂

∫ 1
0

~
W (r) d

~
W (r)

{∫ 1
0
[ ~
W (r)]

2
dr}1/2

μ = 0 ρ = 1
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Random Walk with Drift

Under the null hypothesis  and , the limit distribution radically changes:

The limit distribution exactly the same as the limit distribution of the OLS estimator of

the model

Recall that 

the (nontrivial) time trend asymptotically dominates the stochastic trend

in large samples, it behaves as if the regressor  is replaced by the deterministic

trend

This specification cannot differentiate between the deterministic trend and the random

walk with drift

μ ≠ 0 ρ = 1

[ √T (μ̂ − μ)

T 3/2 (ρ̂ − 1)
]⇒ N ([ 0

0
] ,σ2[ 1 μ/2

μ/2 μ2/3
]

−1)

yt = μ + δt + ϵt

yt = μ + (t − 1)μ + ∑t−1
s=1 ϵs

yt−1

+ ϵt

yt−1
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Random Walk with Drift and Trend

Now we add a linear deterministic trend term in the specification:

Assume initial value  and :

Quadratic trend: .

y = μ + δt + ρyt−1 + ϵt

y0 = 0 ρ = 1

yt = μt + δ(1 + 2 + ⋯ + t) + ε1 + ⋯ + εt

= μt + t(t + 1)
deterministic trend

+ ε1 + ⋯ + εt
stochastic component

δ

2

E[yt] = μt + t(t + 1)δ
2
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Random Walk with Drift and Trend

As in previous case, under the null hypothesis  and 

The regressor  asymp. equivalent to a time trend  multicollinearity

The idea: subtract  from 

where ,  is a random walk without drift.

under , the limit distribution of the OLS estimator of the hypothetical regression:

The limit distribution of  can be obstained by 

The distribution does not depend on  and ; whether  or not does not matter.

y = μ + δt + ρyt−1 + ϵt

ρ = 1 δ = 0

yt−1 ⇝

μ(t − 1) yt−1

yt = (1 − ρ)μ + ρ (yt−1 − μ (t − 1)) + (δ + ρμ) t + ϵt

= μ∗ + ρ∗ξt−1 + δ∗t + ϵt,

ρ∗ = ρ ξt

H0

⎡⎢⎢⎢⎣
T 1/2 (μ̂∗ − 0) /σ

T (ρ̂∗ − 1)

T 3/2 (δ̂ ∗
− μ) /σ

⎤⎥⎥⎥⎦
⇒

⎡⎢⎢⎢⎣
1 ∫ 1

0 W (r) dr 1/2

∫ 1
0 W (r) dr ∫ 1

0 [W (r)]2dr ∫ 1
0 rW (r) dr

1/2 ∫ 1
0 rW (r) dr 1/3

⎤⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣
W (1)

∫ 1
0 W (r) dW (r)

∫ 1
0 rdW (r)

⎤⎥⎥⎥⎦
ρ̂ T (ρ̂∗ − 1) = T (ρ̂ − 1)

μ σ μ = 0
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Discussion of Specifications of DF tests

Three specifications of DF tests:

Random walk: 

Random walk with drift: 

Random walk with drift and trend: 

Each specification leads to a different asymptotic distribution, and thus provides

different critical values.

Which is the "right" one to use?

If you have a specific null hypothesis about the process - go for it

If not, fit a specification, that is a plausible description of the data under both the

null hypothesis and the alternative.

For example, if you observe a obvious trend - use the random walk with drift and

trend

yt = yt−1 + ϵt

yt = μ + yt−1 + ϵt

yt = μ + δt + yt−1 + ϵt
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Implementation

enough math... let's implement the DF test with different specifications

n <- 100

x <- 1 + rnorm(n) # mu = 1, sigma = 1

y_drift <- cumsum(x)

DFtest_drift <- ur.df( y_drift, type = "drift", lags = 0 )

n <- 100

x <- 0.2 + 0.05*(1:n) + rnorm(n) # mu = 1, sigma = 1

y_trend <- cumsum(x)

DFtest_trend <- ur.df( y_trend, type = "trend", lags = 0 )
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Implementation

The packages uses the representation

The null hypothesis is  and the alternative is 

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

tau2  refers to 

phi1  refers to joint null hypothesis of  and ; This statistic is non-negative.

The bigger is the value, the stronger is the evidence of rejection.

These joint tests are two-sided

Δyt = μ + τyt−1 + ϵt

τ = 0 τ < 0

τ

μ = 0 τ = 0
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Implementation

For the trend specification, the packages uses the representation

The null hypothesis is  and the alternative is 

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

tau3  refers to 

phi2  refers to joint null hypothesis of 

phi3  refers to joint null hypothesis of 

Different specifications have different critical values

Δyt = μ + δt + τyt−1 + ϵt

τ = 0 τ < 0

τ

μ = τ = 0

μ = τ = δ = 0
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Augmented Dickey-Fuller (ADF) Test

The asymptotic distribution of the DF test is based on the assumption that the error

term has homoskedasticity and no serial correlation

The assumption  was maintained

To cope with the violation of the assumption of no serial correlation, the augmented

Dicky-Fuller (ADF) test adds more differenced lag terms , .

Three specifications:

None: 

With drift: 

With drift and trend: 

The lag terms are supposed to absorb serial correlation in the error term

The number of lags can be decided by AIC or BIC.

Under the null  - these are AR(p) for ; If  is I(1), then the AR(p) for  is

stationary

ϵt ∼ iid(0,σ2)

Δyt−j j = 1, 2, ⋯ , p

Δyt = τyt−1 + ∑p−1
j=1 ϕjΔyt−j + ϵt

Δyt = μ + τyt−1 + ∑p−1
j=1 ϕjΔyt−j + ϵt

Δyt = τ + δt + ρyt−1 + ∑p−1
j=1 ϕjΔyt−j + ϵt

τ = 0 Δyt yt Δyt
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Augmented Dickey-Fuller (ADF) Test

Let's walk through the AR(2) process to see how ADF works.

Under the null hypothesis that there exists one unit root -  and 

then we have  where  admits a MA 

representation with LRV 

including the lagged term  aborbs the serial correlation and separates the

clean error  out

Limit distribution of the OLS estimator of :

; then  Similar results for the t-statistic.

yt = φ1yt−1 + φ2yt−2 + ϵt

= (φ1 + φ2) yt−1 + φ2 (yt−2 − yt−1) + ϵt

= ρyt−1 + ϕ1Δyt−1 + ϵt

ρ = 1 |ϕ1| < 1

Δyt = ϕ1Δyt−1 + ϵt := ut ut (∞)

λ2 = σ2( )2
1

1−ϕ1

Δyt−1

ϵt

yt = ρyt−1 + ϕ1Δyt−1 + ϵt

T (ρ̂ − 1) ⇒ =
λσ ∫ 1

0 W (r) dW (r)

λ2 ∫ 1
0 [W (r)]2dr

σ ∫ 1

0 W (r) dW (r)

λ ∫ 1
0 [W (r)]2dr

→p =1

1−ϕ̂1

1
1−ϕ1

λ
σ

⇒ DF dist.
T (ρ̂−1)
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Augmented Dickey-Fuller (ADF) Test

The insight we learned from AR(2) extends to higher order

Implementation is straightforward with the urca  package

y <- arima.sim( model = list(order = c(3,1,1), ar = c(0.4, 0.2, 0.2), ma = 0.5), n = 1

df <- ur.df(y, type = "trend", lags = 10, selectlags="AIC" )

############################################### 

# Augmented Dickey-Fuller Test Unit Root Test # 

############################################### 

Test regression trend 
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Phillips-Perron (PP) Test

Phillips and Perron (1988) handle heteroskedasticity and no serial correlation

stick to the simple AR(1) setup; no lags included

serially correlated error term:  where .

The PP test statistic involves the long-run variance

naturally arise in the presence of serial correlation

semiparametric framework

nonparametric estimation of the long-run variance

yt = ρyt−1 + ut

ut = C(L)ϵt = ∑∞
j=0 cjϵt−j ϵt ∼ iid(0,σ2)
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Long-run Variance

Recall: for generic time series ,

Long run variance: 

can be defined for any time series, not necessarily stationary ones - as long as the

variance above exists

compared to the plain variance , it takes the serial correlation into consideration

For stationary process ,

Xt

var[
T

∑
t=1

Xt] = E[(
T

∑
t=1

Xt)
2]

= E[
T

∑
t=1

X2
t + 2

T

∑
t=1

T−j

∑
j>1

XtXt+j]

= γ0 + 2
T−1

∑
j=1

(1 − ) γj

1

√T

1

T

1

T

j

T

lrvar(yt) = var [limT→∞ ∑T
t=1 Xt]1

√T

γ0

Xt = C(L)ϵt

λ2 := lrvar(Xt) =
∞

∑
h=−∞

|γ(h)| = σ2
∞

∑
h=0

∞

∑
j=0

∣∣cjcj+h∣∣ = σ2( ∞

∑
j=0

∣∣cj∣∣)
2

= [σ2C(1)]2
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Long-run Variance

OLS with Serially Correlated Error

Gauss-Markov theorem is gone

Simple regression: 

The numerator is  is serially correlated in general if  is serially correlated

The asymp. variance must be adjusted:  instead of simple 

√T (β̂ − β0) = √T × =
Σ(xt−x̄)εt
Σ(xt−x̄)2

T −1/2 ∑(xt−x̄)εt
T −1 ∑(xt−x̄)2

xtϵt ϵ
lrvar[xtϵt]

(var[xt])2 var(ϵt)/var(xt)
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Long-run Variance

Estimation of long-run variance

Recall that 

Impossible to estimate  accurately for large  given the sample size is 

Rely on the convergence property , the lrvar is approximated by

truncation at some  (with  for consistency): 

 is the kernel weight

Nadaraya–Watson kernel: 

Bartlett kernel:  (Newey and West, 1987)

The estimator for lrvar based on Bartlett kernel is also called Newey-West (NW)

estimator

Phillips (1987): NW est. is consistent if  and .

in practice, choosing  can be tricky

λ2 = ρ0 + 2∑∞
h=1 γ(h)

γ(h) h T

∑∞
h=1 |γ(h)| < ∞

p p/T → 0 λ̂
2

= γ̂0 + 2∑p

h=1 wp(h)γ̂(h)

wp(h)

wp(h) = 1

wp(h) = 1 − h/(p + 1)

p → ∞ p/T 1/4 → 0

p
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Phillips-Perron (PP) Test

Let's get back to unit root tests...

serially correlated error term:  where .

Under the null , Phillips and Perron (1988) should that

where the additional term arises from the serial correlation.

The idea is to find the finite sample counter part of it and move it to the left-hand side

Note ;  and  can

consistently estimated

Then appending  to  gives us the DF distribution in the limit

yt = ρyt−1 + ut

ut = C(L)ϵt = ∑∞
j=0 cjϵt−j ϵt ∼ iid(0,σ2)

ρ = 1

T (ρ̂ − 1) ⇒ +
∫ 1

0
W(r)dW(r)

∫ 1
0

[W(r)]2dr

(1/2){λ2 − γ0}

λ2 ∫ 1
0

[W (r)]2dr

T 2 = (T −2 ∑X2
t−1)

−1
⇒ (λ2 ∫ 1

0
[W (r)]2dr)−1σ̂ρ̂

s2
T

λ γ0

T 2 ×
σ̂ρ̂

s2
T

λ̂−γ̂0

2
T (ρ̂ − 1)
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Phillips-Perron (PP) Test

PP  test (in urca  this corresp. to type = "Z-alpha" )

PP  test (in urca  this corresp. to type = "Z-tau" ):

For the specifications with drift and trend, the PP test statistics has the same limiting

distribution as those derived for DF tests.

ρ

T (ρ̂ − 1) − T 2 ⇒
σ̂2
ρ̂

s2
T

λ̂
2

− γ̂0

2

∫ 1
0
W (r) dW (r)

∫ 1
0

[W (r)]2dr

t

√ tT −{T 2 }
1/2

⇒
γ̂0

λ̂
2

σ̂2
ρ̂

s2
T

λ̂
2

− γ̂0

2√λ̂
2

∫ 1
0 W (r) dW (r)

{∫ 1
0

[W (r)]2dr}1/2
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Phillips-Perron (PP) Test

Implementation of PP test is similar as before using urca  package

y <- arima.sim( model = list(order = c(3,1,1), ar = c(0.4, 0.2, 0.2), ma = 0.5), n = 1

df <- ur.pp(y, type = "Z-tau", model = "trend")

################################## 

# Phillips-Perron Unit Root Test # 

################################## 

Test regression with intercept and trend 
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Discussion

Both ADF and PP test the null of a unit root against the alternative of stationarity

Unit root tests may have low power against relevant alternatives

Useful to perform tests of the null of stationarity as well as tests of the null of a unit

root.
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Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test

Kwiatkowski, Phillips, Schmidt and Shin (1992) device a test under the null of stationarity

Suppose the series can be decomposed into a random walk and a staionary error

where  for some  and  for .

Null hypothesis 

under which  become a constant determined by the initial value

the regression is thus  (intercept only)

Alternative : the regression is a linear deterministic trend plus a random

walk.

The KPSS test statistic

where  is a standard Brownian bridge,  is a standard

yt = wt + ut,

Δwt = vt vt ∼ iid(0,σ2
v) ut = C(L)ϵt ϵt ∼ iid(0,σ2)

H0 : σ2
v = 0

wt = w0

yt = w0 + ut

H1 : σ2
v > 0

KPSS =
T

∑
t=1

(
t

∑
j=1

ûj)
2{⇒ ∫ 1

0 [V (r)]2dr under H0

= Op(T/p) →p ∞ under H1

1

T 2λ̂
2

V (r) = W(r) − rW(1) W(r) 77 / 88



Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test

The baseline setup can be extended to include drift and trend

Under the null hypothesis , the regression is trend stationary

 where  is absorbed in the drift

Regress  on a constant and a time trend to obtained residuals 

where  is a second-level Brownian bridge defined by

yt = μ + δt + wt + ut,

H0 : σ2
v = 0

yt = μw + δt + ut w0

yt ût

KPSS{⇒ ∫ 1
0 [V2 (r)]2dr under H0

= Op(T/p) →p ∞ under H1

V2(r)

V2 (r) = W (r) + (2r − 3r2)W (1) + (−6r + 6r2) ∫
1

0
W (s) ds
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Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test

The KPSS test can also be implemented in the urca  package

y <- arima.sim( model = list(order = c(3,1,1), ar = c(0.4, 0.2, 0.2), ma = 0.5), n = 1

ur.kpss(y, type = "tau",  lags = "short") |> summary()

## 

## ####################### 

## # KPSS Unit Root Test # 

## ####################### 

## 

## Test is of type: tau with 7 lags. 

## 

## Value of test-statistic is: 1.7178 

## 

## Critical value for a significance level of: 

##                 10pct  5pct 2.5pct  1pct

## critical values 0.119 0.146  0.176 0.216
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Alternative package: tseries

Phillips-Perron (PP) Test

tseries::pp.test(x)

Augmented Dickey-Fuller (ADF) Test

tseries::adf.test(x)

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test

tseries::kpss.test(x)
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Bubble Testing
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Bubble Testing

The alternative hypothesis of conventional unit root tests is the stationary regime

Financial bubbles and crisese have been witnessed in history: Financial crises often

preceded by asset market bubbles

How to detect bubbles?

Essentially, want to test the null hypothesis:  (unit root) versus alternative

hypothesis:  (explosive)

Past practice

Diba and Grossman (1989):

unit-root test on first differenced price level (  )

cointegration test on stock price (  ) and dividend series (  )

found no evidence of bubbles in historical data

Evans (1991)

showed standard tests fail to detect explosive bubbles due to periodic collapse

ρ = 1

ρ > 1

Δpt

pt dt

82 / 88



Bubble Testing

Phillips, Wu and Yu (2011) Approach

Applied right-tailed augmented Dickey-Fuller (ADF) test

Used forward recursive rolling windows to improve power

Bubble is a transient phenomenon.

Found strong evidence of explosive characteristics in  for 1990s data

Cannot deal with multiple bubbles

Phillips, Shi and Yu (2015, PSY) Approach

Proposed generalized sup ADF test (GSADF)

Allows flexible starting and ending points for rolling windows

Uses recursive backward regression technique for date stamping

Using long historical monthly data, identify three big historical bubbles: 1890’s, 1929, and

2001

pt
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PSY Test

Test the existence of exuberance behavior

Rolling window:starting from  fraction of the sample and ending at the  fraction

ADF statistic based on the regression is denoted by ,

Generalized sup ADF test statistic (varying both the starting and the ending point)

Limiting distribution under the null

rth1 rth2

Δyt = αr1,r2 + βr1,r2yt−1 +
k

∑
i=1

ψi
r1,r2Δyt−i + εt

ADF r2
r1

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

{ADF r2
r1
}

sup
r2∈[r0,1]

r1∈[0,r2−r0]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
rw [W(r2)2 − W(r1)2 − rw] − ∫ r2

r1
W(r)dr[W(r2) − W(r1)]1

2

r
1/2
w {rw ∫ r2

r1
W(r)2dr − [∫ r2

r1
W(r)dr]2}1/2
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PSY Test

Date-stamping Strategies

Backward SADF test: performs a sup ADF test on a backward expanding sample

sequence where the endpoint of each sample is fixed at ,

compare  to the critical value of the sup ADF statistic based on 

observations for each 

where  is the % critical value of the sup ADF statistic based on

 observations.

r2

BSADFr2 (r0) = sup
r1∈[0,r2−r0]

ADF r2
r1

BSADFr2(r0) ⌊Tr2⌋

r2 ∈ [r0, 1]

r̂e = inf
r2∈[r0,1]

{r2 : BSADFr2(r0) > scv
βT
r2 }

r̂f = inf
r2∈[r̂e+δ log(T )/T ,1]

{r2 : BSADFr2(r0) < scv
βT
r2 }

scv
βT
r2 100(1 − βT )

⌊Tr2⌋
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Discussion

The test statistic is based on ADF test. Take into consideration of the multiple testing

issue

Reduced form by nature

Work as a real time monitoring system

In use in central banks
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Implementation PSY Test

BubbleTest  based on the MultipleBubbles  package

A wrapper with date-stamping function and visualization

Recent R package psymonitor

Install from Github source

Computationally intensive due to Monte Carlo simulation
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https://github.com/zhan-gao/BubbleTest
https://github.com/itamarcaspi/psymonitor
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