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Overview

1. Stationarity
2. ARIMA Model
3. Detrending
4. Unit Roots

5. Bubble Test
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Stationarity



Stationarity

A time series is essentially an chronically ordered collection of random variables.

Y1,Y2, -,y is a random draw from population of an infinite series

o Y-1,Y90,Y1,Y2, 0

There is dependence within the series

A single realization is observed... but statistical analysis requires repeated patterns

o Recall: analysis of cross-sectional data relies on independence across observations

:. :. :. > - ::O ::G :G > -

1/r'f{} Y'tu-f'l Y'fu+2 1/'f{}'i'h Y’tu+h+1 Y’tu+h+2
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Stationarity

Roughly speaking, stationarity requires the "patterns" to be invariant across time.

Strict stationarity

o Pr (Y;flayvtza oo 7thk) = Pr (Ytﬁ—fuy;fg—i—h) oo °7thk—i—h) forany ty,-- -, t, h.

Weak stationarity
o constant mean u = E[Y;] and variance 0? = Var(Y;) for all ¢

o Autocovariance y(h) = Cov(Y;, Y;11) depends only on h.

Strict stationarity implies weak stationarity if first two moments exist.
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Stationarity

o Wold Decomposition (Wold, 1938)

e Any trend-stationary process {yt} can be decomposed into a deterministic trend

component and a schochastic stationary process component:
0
Yt = dt + Z o €t—j,
3=0
where ay = 1 and Z;io a? < K < o0, and {¢ } is a serially uncorrelated process

defined by inoovations, €; = y; — E[y;|Z;_1] where E[e?|Z] = 02, E[e;d,] = 0 and
Zi1 ={Yt-1,Yt-2," -}
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Stationarity

The key to stationarity: {aj} decays fast enough (exponentially decay) so that it is

absolutely summable (ie, 332 |e;| < oo).

The autocovariance function: y(h) = Cov(ys, Ysin) = ZJ 0 Q0L hO?

Long run variance: Irvar(y;) = var [hmT_mo ed Zt . yt] => . |v(h)]

o0

Irvar(y;) < o Zf] jajin| <o (Z |aj> < 00
j=

=0

The corresponding autocorrelation: Z;’io lp(h)| < Z;’iﬂ || < o0
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Autocovariance and Autocorrelation

Useful to check these statistics as first exploratory steps

Moment estimators:

=Jr=%W+y+...+yr)

(h) = % ZihH e — Ur) Ye-n — Y7)

yr(h)
© pT(h) - 7::1(0)

Asymptotic properties; Ref. Pesaran (2015) Ch. 141 and 14.2.

Yule-Walker equations; Ref. Pesaran (2015) p.280; AR(2) as a example

Yt—-nYt = ¢1yt—hyt—1 + ¢2yt—hyt—2 + Yt—nEt

Taking expectation of both sides:

¥(h) — d1y(h — 1) — ¢2y(h — 2) = {22 h=0

(0)7(2)—7*(1)

_ 7
and 2 = “h) () -
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Autocovariance and Autocorrelation

set.seed(123)
c(0.5, 0.3)))

y ¢ arima.sim(n = 1000, list(ar

acf(y, type = "covariance", main = "ACF of AR(2) process")
ACF of AR(2) process
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Autocovariance and Autocorrelation

acf(y, type = "correlation", main = "Autocorrelation of AR(2) process")

Autocorrelation of AR(2) process

ACF
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Lag
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Partial Autocorrelation Function (PACF)

pacf(y, main = "PACF of AR(2) process")

PACF of AR(2) process
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Box-Pierce and Ljung-Box Test

e Test Hy: p(1) =p(2) =---=p(m) =0
« Box and Pierce (1970) @ statistic @, =T >, ; p2(h) =q x2(m)

o Poor finite sample performance

« Ljung and Box (1978) @, = T(T +2) D" | =+ /3 (h) =4 x%(m)
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Box-Pierce and Ljung-Box Test

Box.test(y, lag = 10, type = "Box-Pierce")

HH

Ht Box-Pierce test

HH

#H data: vy

# X-squared = 1795.5, df = 10, p-value < 2.2e-16

Box.test(y, lag = 10, type = "Ljung-Box")

HH

tHt Box-Ljung test

HH

#H data: vy

# X-squared = 1805.3, df = 10, p-value < 2.2e-16
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ARIMA



Autoregressive Moving Average (ARMA) Process

e ARMA(p,q) process: Y = @1Ys—1 + ** + GpYr—p + € + 016,71 + -+ + 0,6,
o Write the model in lag operator (backshift operator) notation:
¢(L)y: = 6(L)e;
HL) =1~ 1L~ L7
O(L)=14+6,L+---+6,L?
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Autoregressive Moving Average (ARMA) Process

To invert the AR component: the roots of ¢(z) = 0 are outside the unit

y; = a(L)0(L)e; where a(L)p(L) = 1

The latter is equivalentto o = P11 + -+ + Ppa;_p, 2 = 1,2,-- - withog = 1

and a; = 0forz <O

The solution is given in terms of roots of ¢(z) = H§:1(1 —2z)=0
(1—=AL) '=14+AL+NL?*+---for|A| <1
ARMA(p,q) ~> MA (00)

Other the other hand, the invertibility of the MA component ~» a natural approach for esi.
Y ~ Biys—1 + Boyy—2 + -+ + Bsyr—s + € where B(L)p(L) = 1

e Truncation as order S

e Estimate Bs by Ordinary Least Squares (OLS)
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Autoregressive Moving Average (ARMA) Process

Estimation of AR process: Yule-Walker / OLS / MLE
e they are asymptotically equivalent

Due to violation of strict exogeneity, OLS has a small sample bias (Details in Pesaran (2015)

Ch. 14.5 and references therein)

o stationary AR(1) with normally distributed errors (Kendall (1954) and Marriott and Pope
(1954))

E(QBOLS)_Qb:_l—;.,?)gb—FO(i)

e Bjas-correction
o Orcutt and Winokur (1969) based on the formula above

o Higher order autoregressive model - shaman and Stine (1988)

o (Half) Jackknife bias-correction - Quenouille (1949) 17/ 88



Simulation: Bias of OLS estimator for the AR(1)

set.seed(100)
n_vec « c(10, 20, 30, 50, 100)
num_n ¢« length(n_vec)
rho < 0.5
R « 2000
rho_hat_mat < matrix(NA, R, num_n) # Initialize result container
for(i in 1:num_n) {
n < n_vec[i]
for(r in 1:R){
y ¢ arima.sim(model = list(order = c(1, 0, 0), ar = rho), n = n)
rho_hat mat[r, 1] ¢« as.numeric(

ar(y, order.max = 1, aic = FALSE, method = "ols")$ar
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Simulation: Bias of OLS estimator for the AR(1)

data.frame(
n = n_vec,
bias = colMeans(rho_hat _mat) - rho,

formula = -(1 + 3 * rho) / n_vec

n bias formula
10 -0.25481602 -0.25000000
20 -0.12655888 -0.12500000

50 -0.04736005 -0.05000000

i 8 F F %

1
2
3 30 -0.08788927 -0.08333333
4
5

100 -0.02640868 -0.02500000

You may try other values of ¢ and T' to complete the picture.
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Integrated Time Series

(Loosely speaking) Weakly dependent time series is called integrated of order 0 (1(0))

o Integrated of order 1 (I(1)): the first difference Ay; = y; — y;—1 is a 1(0) process

e Integrated of order d (I(d)): the d-th difference A%y, is a 1(0) process

e In real financial and economic applications, we rarely witness time series of integration
order higher than 2

o ARIMA(p, d, q):After d-th differencing, the time series becomes a stationary ARMA(p,

q) process
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ARIMA(p,d,q)

e Simulate data from ARIMA model: arima.sim(list(order = c(p,d,q)

y ¢ arima.sim(n = 1000, list(order = c(2, 1, 2), ar = c(0.5, 0.3),

plot(y, type = "1", main = "ARIMA(2,1,2) process")

ARIMA(2,1,2) process

, ar = , ma = )

ma = c(0.5, 0.3)).

y
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ARIMA(p,d,q)

y_dff « diff(y)
plot(y_dff, type = "1", main = "Differenced ARIMA(2,1,2) process")

Differenced ARIMA(2,1,2) process

y_dff
2 0 2 4 6
|

4
|
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|
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Time
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ARIMA(p,d,q)

e Estimation: arima(y, order = c(p,d,q))

arima(y, order = c(2, 1, 2))

Ht

#H Call:

## arima(x = y, order = c(2, 1, 2))

Ht

#H Coefficlents:

i arl ar2 mal ma2

Ht 0.4307 0.3671 0.5369 0.2767

H s.e. 0.0957 0.0894 0.0927 0.0347

Ht

#t sigma”2 estimated as 0.9558: log likelihood = -1397.29, aic = 2804.59
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ARIMA(p,d,q)

In practice, the order is unknown: Model selection by information criteria

forecast :: auto.arima(y)

i %

as.zoo.data.frame zoo

Seriles: y

ARIMA(2,1,2)

Coefficients:

arl ar?

i 8B 8 F 5 % B B E H

method from

mal

0.4307 0.3671 0.5369
s.e. 0.0957 0.0894 0.0927

AIC=2804.59 AICc=2804.65

Registered S3 method overwritten by 'quantmod':

ma?2
0.2767
0.0347

sigma”2 = 0.9597: 1log likelihood = -1397.29
BIC=2829.13
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ARIMA(p,d,q)

forecast :: checkresiduals(forecast::auto.arima(y))

Residuals from ARIMA(2,1,2)
3-

ool LIl |
-

5 0 15 20 25 a0
Lag

H Ljung-Box test

I

t#H# data: Residuals from ARIMA(2,1,2)

#H Qx = 1.8579, df = 6, p-value = 0.9323
I

#H Model df: 4. Total lags used: 10

disy
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Real data: S&P 500 index

SPX ¢« quantmod:: getSymbols(""GSPC",auto.assign = FALSE, from = "2000-01-01")$GSPC.Clc
plot(SPX)

SPX 2000-01-03 / 2024-09-27
5000 5000
4000 4000
3000 3000
2000 2000
1000 1000

T T 1 17 T 1 17 T 17 71T 7T &1 1T°T°‘1+T7T1T7TT7T7T T T 7T T1
Jan 03 Jan 02 Jan 03 Jan 02 Jan 03 Jan 02 Jan 02 Jan 04 Jan 02
2000 2003 2006 2009 2012 2015 2018 2021 2024
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Real data: S&P 500 index

1SPX « log(SPX)
plot(xts::xts(1SPX), main = "Log S&P 500 index")

Log S&P 500 index 2000-01-03 / 2024-09-27
8.5 8.5
8.0 8.0
7.5 7.5
7.0 7.0
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2000 2003 2006 2009 2012 2015 2018 2021 2024
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Real data: S&P 500 index

forecast ::auto.arima(1SPX)

Series: 1SPX
ARIMA(l,l,O) with drift
Coefficients:

arl drift

-0.1008 2e-04
s.e. 0.0126 1le-04

sigma”™2 = 0.0001491: log likelihood = 18586.31

i 8B 8 F 5 % B B E H

AIC=-37166.62 AICc=-37166.62 BIC=-37146.41

28 / 88



Real data: S&P 500 index

SPX_ret ¢« diff(1SPX)[-1]

plot(SPX_ret, type = "1", main = "S&P 500 returns")

S&P 500 returns 2000-01-04 / 2024-09-27
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Real data: S&P 500 index

forecast::auto.arima(SPX_ret)

i 8B 8 F 5 % B B E H

Series: SPX_ret

ARIMA(1,0,0) with non-zero mean

Coefficients:
arl mean
-0.1008 2e-04
s.e. 0.0126 1le-04

sigma”™2 = 0.0001491: log likelihood = 18586.31
AIC=-37166.62 AICc=-37166.62 BIC=-37146.41
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Detrending: Hodrick-Prescott filter



Detrending: Hodrick-Prescott filter

The Hodrick-Prescott (HP) filter is a curve fitting procedure proposed by Hodrick and

Prescott (1997) to estimate the trend path of a series.

Ys 1S decomposed into a trend component and a cyclical component
*
Yt = Y, + ¢t

The HP filter:

T
min [ (g —y) + 2 (M%)

YiYs Y1 | 1 ¢

N
[

I
\

where A is a tuning parameter.

Conventional choice: A = 1600 for quarterly data, A = 100 for annual data.
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Boosted HP filter

e Phillips, P. C, & Shi, Z. (2021). Boosting: Why you can use the HP filter. International
Economic Review, 62(2), 521-570.

e [terate the HP filter to fully remove the trend

data(IRE) # load the data 'IRE'

lam ¢« 100 # tuning parameter for the annual data

# raw HP filter

bx HP ¢ bHP::BoostedHP(IRE, lambda = lam, iter= FALSE)

# stopping stands for the condition of the terminal of iteration

# by BIC
bx BIC ¢« bHP::BoostedHP(IRE, lambda = lam, iter= TRUE, stopping = "BIC")
# by ADF
bx_ADF ¢« bHP::BoostedHP(IRE, lambda = lam, iter= TRUE, stopping = "adf")
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Boosted HP filter

plot(bx_ADF, iteration_location "upright", interval_t = 0.8)

Figure of adf bHP (dynamic)
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Unit Roots



Random walks

EilYirn] = Blyeen |y, Ye—1,- -] = Yt

« Related to efficient market hypothesis (EMH)
o Samuelson (1965, Nobel 1970), Fama (1970, Nobel 2013)
o Fama v.s. Thaler
o Asimple model of random walk (with no drift) is the AR(T): ¢ = y¢+—1 + € with
e ~ id(0, 0?)
o AR(1) coefficient p = 1 (unit root) and no drift u = 0

o eps « rnorm(n); y <« cumsum(eps)

Random walk

y
20 40 60 80

0
|

0 200 400 600 800 1000
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https://zhan-gao.github.io/ECON515//DeBondtThaler85Fama98.pdf

Random walks: Properties

For simplicity, initial value yg = 0

Shocks are permenant: y; = €1 + €3 + -+ - + €

2

Nonstationarity: E[y;] = 0; var[y;] = to?; cov[ys, y;] = min(t, s)o

Et[yt—i—h] = E[yt—l—h‘yta Yt—1, - - ] =Y

Compared to stationary AR(1)

o The best mean prediction Ey[y;n] = B"y; forh > 0
o Mean reversion Ei[ysip] — 0as h — oo

o Diminishing shocks y; = ZZ;B ples_qg

Usual LLN and CLT don't apply in the presence of unit roots
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Unit root Test

Consider y; = py;_1 + €, € ~ i.1.d. (0,0?)

Want to test the null hypothesis Hy : p = 1 against the alternative Hy : \p\ <1

o letp = — DYEERY be the OLS estimator of p
T Zt 1Y
- p—1
e The t-statistic: £y, = —
p
A 9 T 2 A 2
0 G5 = sp(Xgy ¥iy) " where st = 717 3, (v — py)”

o In the cross-sectional setup / stationary time series: t-statistic — N (0, 1)

o In the presence of unit root: the limiting distribution of ¢, is non-standard
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Alternative representation

Subtract y;_1 on both sides,
Ay, = Tyi—1 + €

where 7 = p — 1.
e The hypotheses become Hy : 7 = 0 against Hy : 7 < 0.
e The t-statistic from OLS estimation of T, t,, is exactly the same as tp
e As a historical convention, most statistical software, such as the urca package in R,

adopt the 7 representation
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Dickey-Fuller Test

o Dicky and Fuller (1979, 1981) study the asymptotic distribution of the ¢-statistic.
« The limiting distribution of ¢, is a stable distribution

o non-standard: Unlike Bernoulli/uniform/normal/etc distribution, we don't have an
analytical form of the density of DF distrbution

o |t can be easily approximated by Monte Carlo simulation.
e Steps:

1. Generate data under the null hypothesis y; = y¢_1 + U

2. Compute the t-statistic ¢,

3. Repeat 1. and 2. for R times, with R large enough (say 10,000 or 20,000)

4. Calculate the critical values (for T') by finding the empirical quantile of the R t-

statistics
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Dickey-Fuller Test

e DF_sim generates the t-statistics under Hy / Hy depending on pg

DF_sim « function(rho 0, n = 1000, num_rep = 20000) {

test_stat <« rep(NA, num_rep)

t0 ¢« Sys.time()

for(r in 1:num_rep) {

}

if (rho 06 = 1) {

x <« cumsum(rnorm(n))
} else {
X <« arima.sim(model = list(order = c(1, 0, 0), ar = rho 0), n = n)
}
rho_hat « lsfit(x[-n], x[-1], intercept = FALSE)$coefficients
sigma2 < mean((x[-1] - rho_hat * x[-n])"2) / (sum(x[-n]1"2))

test_stat[r] « (rho_hat - rho 0) / sqrt(sigma2)

return(test stat)
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Dickey-Fuller Test

t_stat _ur ¢« DF_sim(1)
p < ggplot(data.frame(tstat = t_stat_ur), aes(x = tstat)) +
"#FFC72C", alpha = 0.5) +

geom_density(color = "#990000", fill

geom_vline(aes(xintercept = 0), color = "navyblue", linetype ="dashed")

0.44

0.11

0.01

quantile(t_stat_ur, c(0.025, 0.05, 0.95, 0.975)) # Critical values

tHt 2.5% 5% 95% 97.5%
H -2.232765 -1.941602 1.312006 1.659953
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Dickey-Fuller Test

o Compare with empirical distribution of ¢-statistics with different pg

t stat _stat < DF_sim(0.5)
t_stat _near_ur ¢« DF_sim(0.99)
df < reshape2::melt(list("Unit Root" = t_stat_ur, "Stat" = t_stat_stat, "Nearly I(1)
names(df) « c("tstat", "type")
p < ggplot(df, aes(x = tstat, fill = type, color = type)) +
geom_density(alpha = 0.5) +
stat_function(fun = dnorm, color = "black", linetype = "dashed", linewidth = 1 ) -
geom_vline(aes(xintercept = 0), color = "navyblue", linetype ="dashed") +
scale_fill_manual(breaks = c("Unit Root", "Stat", "Nearly I(1)"), values = c("#FF(

scale_color_manual(breaks = c("Unit Root", "Stat", "Nearly I(1)"), values = c("#FI
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Dickey-Fuller Test
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Dicky-Fuller Test

o Dickey-Fuller (DF) distribution

1
T2 X, qu _ Sy We)aW(z)

T-2%, X2, Jol W (r)]2dr

T(p—-1)=

as T' — oo by Functional CLT (Ref. White (2001) Asymp. Theory for Econometricians),
where W (+) is a standard Brownian motion.

o Super consistency with rate of convergence T instead of the regular /1 rate

0.1254

0.1001

0.0754

density

0.0501

0.0254

0.0001

1
-40 -30 -20 -10 0
T(-1)
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Dickey-Fuller Test

e The limit distribution of tp:

0.44

1
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Dickey-Fuller Test

e Implement DF test with mature packages

library(urca, quietly = TRUE)

n < 100

y ¢ arima.sim( n = n, list(order = c(0,1,0) ) )
DFtest « ur.df( y, type = "none", lags = 0 )

summary(DFtest)

One-sided test

The t-statistic is usually negative

Pay attention to the critical values

The more negative Is the t-statistic, the stronger is the evidence of rejection
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Dickey-Fuller Test

BHHRHHRHHRHH R HR G HRHH R B AR HR B HR PR IR AR LR
# Augmented Dickey-Fuller Test Unit Root Test #
BHHRHHRHHRHH R HR G HRHH R B AR HR B HR PR IR AR LR

Test regression none
Call:
m(formula = z.diff ~ z.lag.1 - 1)

Residuals:
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Dickey-Fuller Test

An example when the null is false
n < 100

y ¢ arima.sim( n = n, list(ar = 0.5 ) )

DFtest « ur.df( y, type = "none", lags = 0 )
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Dickey-Fuller Test

summary(DFtest)

B AR S R S R R S S S R T S S
# Augmented Dickey-Fuller Test Unit Root Test #
B AR S R S R R S S S R T S S

Test regression none

Call:
Im(formula = z.diff ~ z.lag.1 - 1)

Residuals: 50 / 88



Dickey-Fuller Test

SPX ¢« quantmod:: getSymbols(""GSPC",auto.assign = FALSE, from = "2000-01-01")$GSPC.Clc
1SPX « 1og(SPX)
DFtest « ur.df( 1SPX, type = "none", lags = 0 )
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Dickey-Fuller Test

summary(DFtest)

B AR S R S R R S S S R T S S
# Augmented Dickey-Fuller Test Unit Root Test #
B AR S R S R R S S S R T S S

Test regression none

Call:
Im(formula = z.diff ~ z.lag.1 - 1)

Residuals: 52 / 88



Estimation with Transformed Data

e Judging stationary based on tests is subject to testing errors - pretesting issue

e Many applied economists are inclined to transform a potentially nonstationary time

series into a stationary time series, in order to circumvent the inconvenience brought by

nonstationarity (stationarization)

o To facilitate the stationarization, FRED assigns a transformation code (TCODE), as

recommended transformation of potentially nonstationary time series into

stationary ones.
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head(as.tibble(read.csv("./data/fred md data.csv"))[, 1:10])

H # A tibble:

# 8 8 F &8 % 8 B H

= o v B~ O w N

6 x 10

sasdate

<chr> <dbl> <dbl>
Transf.. 5 5
7/1/19.. 2711.  2538.
8/1/19.. 2722.  2548.
9/1/19.. 2739.  2565.
10/1/1.. 2755.  2580.
11/1/1.. 2760.  2585.

i 1 more variable:

IPCONGD <dbl>

5

21.
21.
21.
21.
21.

N O oo O U

<dbl>

5
289368.
287421.
284734,
292581.
286944,

<dbl>

5

21423.
21396.
21343.
21714,
21470.

<dbl>

5

27.
27.
28.
28.
28.

RPI W875RX1 DPCERA3MO86SBEA CMRMTSPLx RETAILx INDPRO IPFPNSS IPFINAL
<dbl>

<dbl> <dbl>
5 5
28.7 27 .4
29.0 27.7
29.1 27 .7
29.3 27.9
29.4 28.0
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head(as.tibble(fbi:: fredmd description)[, 2:5])

# 8 8 F &8 % 8 B H

o o W N

# A tibble: 6

tcode ttype
<fct> <fct>
First
First
First
First

First

(G2 B G G N NG N

First

X
S~

difference
difference
difference
difference
difference

difference

of
of
of
of
of
of

natural
natural
natural
natural
natural

natural

log:
log:
log:
log:
log:
log:

In(x)-1n(x-1)
In(x)-1n(x-1)
In(x)-1n(x-1)
In(x)-1n(x-1)
In(x)-1n(x-1)
In(x)-1n(x-1)

fred
<chr>
RPI
W875RX1

DPCERA3MO86S...

CMRMTSPLx
RETAILX
INDPRO

description

<chr>

Real Perso..

Real perso..

Real perso..

Real Manu...

Retail and..

IP Index
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Estimation with Transformed Data

|s stationarization a sound practice?
e Suppose y; follows AR(1) process y; = pys—1 + €; where 0 < p < 1

o Take the first difference: Ay; = y; — y:—1. What happens if we regress Ay; on Ay;_17?
Yo —Ye-1 = P(Yt-1 — Yt-2) T €& — €1

e The OLS estimator of p is not only biased but also inconsistent to p
o Note that cov(ys_1 — Yt_2,€ — €-1) = —0* # 0.
e« Whenp=1:

71 Z €+€t—1
T-1Y €

p = —p 0
instead of 1.
e The level data regression and the differenced data regression are about two different

relationships. One does not imply the other. 56 / 88



Extensions of Pure Random Walk

Random walk with drift

 AR(1) with AR coefficient p = 1 and a non-zero drift u #~ 0:
Yt = B+ Y1 T €

where € ~ iid(0, o?).
L t
« Assume initialvalue yo = O:y¢ =t + >, €s
o linear deterministic trend + stochastic trend component (pure random wallk)

e Ely;| = tu, varly;| = to?, E[yin] = hp + ys for h > 0

y
| | | | |

0 20 40 60 80 100

0 20 40 60 80 100

Index
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Random Walk with Drift

Under the null hypothesis p = 0 and p = 1,

Jo W) dw (r) =W (1) [y W (r)dr _ [ W (r)dW (r)

Jo W (r)dr [ Jiiw () dr} i W () }

Tp-1)=

this distribution is even more strongly skewed than that for the case without drift

for T' > 25, 95% of the time the estimated p will be less than unity

the limit distribution of £-statistic changes accordingly

; :,5—1:> foW(T)dW(r)

R e}

joint test of u = 0 and p = 1 with Wald form of F test
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Random Walk with Drift

Under the null hypothesis u £ 0 and p = 1, the limit distribution radically changes:

ke (K Ay

e The limit distribution exactly the same as the limit distribution of the OLS estimator of

the model
Y = b+ Ot + €

e Recallthatyy = p+ (t — 1)p + Zi;ll €s + €

\ -

Yi1
o the (nontrivial) time trend asymptotically dominates the stochastic trend
o in large samples, it behaves as if the regressor y;—1 is replaced by the deterministic
trend
e This specification cannot differentiate between the deterministic trend and the random

walk with drift 59 / 88



Random Walk with Drift and Trend

Now we add a linear deterministic trend term in the specification:
Yy=p+0t+ py; 1+ €
e Assume initial value yo = 0 and p = 1:
yy=put+06(1+2+---+t)+e1+---+ey

d
= pt + §t(t+1)+ 1+ -+ &
.7 g stochastic component
deterministic trend

\

e Quadratic trend: Ely;| = ut + gt(t +1).

y
200
| 1 1

0 50 100

0 20 40 60 80 100

Index
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Random Walk with Drift and Trend

y=p+0t+py1 + €

e Asin previous case, under the null hypothesis p =1and d = 0
e The regressor y;—1 asymp. equivalent to a time trend ~» multicollinearity

e The idea: subtract u(t — 1) from y¢—1

y= (Q—pp+py1—pult—1)+ O+ pu)t+e
= p+pE 1ttt e,
where p* = p, & is a random walk without drift.

o under Hy, the limit distribution of the OLS estimator of the hypothetical regression:

-1

T2 (" —0) /o 1 folW(r)dr 1/2 W (1)
T(p"—1) = | [y W(r)dr [} W@ dr [ W (r)dr Jo () aw (r)]
32 (8"~ ) Jo /2 fyrW(rdr  1/3 Jo raw (r)

« The limit distribution of p can be obstained by T(p" — 1) = T'(p — 1)

e The distribution does not depend on u and o; whether u = 0 or not does not matter.
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Discussion of Specifications of DF tests

e Three specifications of DF tests:
o Random walk: ¥y = y;_1 + €
o Random walk with drift yy = 0+ Y1 + €
o Random walk with drift and trend: y; = pu + 0t + y:_1 + €
e Each specification leads to a different asymptotic distribution, and thus provides
different critical values.
e Which is the "right" one to use?
o If you have a specific null hypothesis about the process - go for it
o If not, fit a specification, that is a plausible description of the data under both the
null hypothesis and the alternative.
o For example, If you observe a obvious trend - use the random walk with drift and

trend
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Implementation

enough math... let's implement the DF test with different specifications

n < 100
X &< 1 + rnorm(n) # mu = 1, sigma = 1

y_drift < cumsum(x)

DFtest _drift <« ur.df( y drift, type = "drift", lags = 0 )
n < 100

X ¢ 0.2 + 0.05%(1:n) + rnorm(n) # mu = 1, sigma = 1
y_trend < cumsum(x)

DFtest_trend ¢« ur.df( y_trend, type = "trend", lags = 0 )
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Implementation

e The packages uses the representation
Ay = p+ 1y 1 + €

e The null hypothesis is 7 = 0 and the alternative is 7 < 0

B B B L B B B e e
# Augmented Dickey-Fuller Test Unit Root Test #
B B B B B B e

e tau2 referstoT
e phi1 refers to joint null hypothesis of 4 = 0 and 7 = 0; This statistic is non-negative.
The bigger is the value, the stronger is the evidence of rejection.

e These joint tests are two-sided
64 | 88



Implementation

e For the trend specification, the packages uses the representation
Ay = p+ 0t + Ty; 1 + €

e The null hypothesis is 7 = 0 and the alternative is 7 < 0

B B L B B B o
# Augmented Dickey-Fuller Test Unit Root Test #
B B B B B B e

tau3 refersto T

phi2 refers to joint null hypothesisof u =7 =10

phi3 refers to joint null hypothesisof u =7=6 =10

Different specifications have different critical values
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Augmented Dickey-Fuller (ADF) Test

The asymptotic distribution of the DF test is based on the assumption that the error
term has homoskedasticity and no serial correlation

o The assumption €; ~ i1d(0, 0?) was maintained
To cope with the violation of the assumption of no serial correlation, the augmented
Dicky-Fuller (ADF) test adds more differenced lag terms Ay;_j, j = 1,2,---,p.
Three specifications:

o None: Ay; = Ty; 1 + Z;:ll Ay ; + €

o With drift: Ay, = pt+ Ty—1 + Y0 Ay ; + €

o With drift and trend: Ay, = 7 + 8t + pyy_1 + 31| ¢;Ay; + €
The lag terms are supposed to absorb serial correlation in the error term
The number of lags can be decided by AIC or BIC.
Under the null 7 = 0 - these are AR(p) for Ay; If y; is (1), then the AR(p) for Ay is

stationary
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Augmented Dickey-Fuller (ADF) Test

Let's walk through the AR(2) process to see how ADF works.

Y =  P1Yi—1 T P2y + €
(p1+92) Ye—1 + 02 (Yt—2 — Yt—1) + €&
PYi—1 + P1AY 1 + €

« Under the null hypothesis that there exists one unit root - p = 1 and |¢;| < 1

o then we have Ayt = ¢1Ayt—1 —|— € 1= Uy where Uy admits a MA (OO)
2
representation with LRV A? = ¢ (1%@)

o including the lagged term Agy;_1 aborbs the serial correlation and separates the
clean error € out

e Limit distribution of the OLS estimator of ¥ = pys—1 + 1 Ay:_1 + €&

TG-1)= Ao [, W (r)dW (r) _ o[, W(r)dW (r)

X2 [ W ()] dr Ay (W (r)2dr

T(p—1 ) . e
o L — A; then (% . ) = DF dist. Similar results for the t-statistic.

~ p _
1—¢, l1-¢ @ 1-¢, 67 | 88




Augmented Dickey-Fuller (ADF) Test

e The insight we learned from AR(2) extends to higher order

e Implementation is straightforward with the urca package

y ¢ arima.sim( model = list(order = c¢(3,1,1), ar = c(0.4, 0.2, 0.2), ma = 0.5), n = :
df ¢« ur.df(y, type = "trend", lags = 10, selectlags="AIC" )

BHHRHHRHHRHH R HR G HRHH R B AR HR B HR PR IR AR LR
# Augmented Dickey-Fuller Test Unit Root Test #
BHHRHHRHHRHH R HR G HRHH R B AR HR B HR PR IR AR LR

Test regression trend
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Phillips-Perron (PP) Test

 Phillips and Perron (1988) handle heteroskedasticity and no serial correlation

o stick to the simple AR(1) setup; no lags included
Yt = PYt—1 T Ut

» serially correlated error term: uy = C(L)e; = Z;io cjer—j where e ~ 7id(0, 0?).
e The PP test statistic involves the long-run variance

o naturally arise in the presence of serial correlation

o semiparametric framework

o nonparametric estimation of the long-run variance
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Long-run Variance

e Recall: for generic time series X,

e Long run variance: Irvar(y;) = var [limT_m % Zle Xt]
o can be defined for any time series, not necessarily stationary ones - as long as the
variance above exists
o compared to the plain variance 7y, it takes the serial correlation into consideration
e For stationary process X; = C(L)e,

A= Irvar(X,) = i lv(h)| = o ii' ¢jc J+h| =0 (i ‘CJ") = [o*C(1))?

h=—00 h=0 j=0
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Long-run Variance

OLS with Serially Correlated Error

e Gauss-Markov theorem is gone

A Tt—T)Et —1/2 T;—T)Es
e Simple regression: vVT(B8 — Bo) = VT x i((xt—z)ﬁ = TT—lgz;:((ar:t—a?:))2

e The numerator is x+€; is serially correlated in general if € is serially correlated

lg’vvjrr[zt]jﬂ instead of simple var(e;)/var(x;)

e The asymp. variance must be adjusted:
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Long-run Variance

Estimation of long-run variance

e Recall that A = pg + 2> 77, v(h)
« Impossible to estimate «y(h) accurately for large h given the sample size is T
e Rely on the convergence property > 7~ 1 |y(h)| < oo, the lrvar is approximated by
truncation at some p (with p/T" — 0 for consistency): = Yo + 2>, wy(R)4(R)
« wy(h) is the kernel weight
o Nadaraya-Watson kernel: wy,(h) =1
o Bartlett kernel: w,(h) =1 — h/(p + 1) (Newey and West, 1987)

e The estimator for lrvar based on Bartlett kernel is also called Newey-West (NW)

estimator
o Phillips (1987): NW est. is consistent if p — 0o and p/Tl/4 — 0.

o in practice, choosing p can be tricky
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Phillips-Perron (PP) Test

Let's get back to unit root tests...
Yt = PYs—1 + Uy
« serially correlated error term: uy = C(L)e; = Z;io cjer—j where e ~ 7id(0, 0?).

 Under the null p = 1, Phillips and Perron (1988) should that

Joy W(r)dw (r) L /2 {¥ -}

LYW dr X2 [ W (r)]dr

Tp—1)=

where the additional term arises from the serial correlation.

e The idea is to find the finite sample counter part of it and move it to the left-hand side

. 1 1
* Note Tzz—;’ =(T2YyXx2) = ()\2 fol L4 (r)]2dr) ; A and g can
T
consistently estimated
55 A=A A . o .
e Then appending T2:—2p X T% to T(p — 1) gives us the DF distribution in the limit

T
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Phillips-Perron (PP) Test

e PP ptest(in urca this corresp.to type

= "Z—alpha")
A2 22 ~ 1
R 5 Tp A= fo W (r) dW (r)
T (p _ 1) - T 2 2 = 1 2
ST fo (W (r)]"dr
e PPt test(in urca this corresp.to type = "Z-tau"):

~2 N 1/2 ~2 1

Y (o A — A W (r)dW (r
:ygtT—{Tz p} Yo fo () ()
A ST

/3 {l wera)”

e For the specifications with drift and trend, the PP test statistics has the same limiting
distribution as those derived for DF tests.
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Phillips-Perron (PP) Test

Implementation of PP test is similar as before using urca package

y ¢ arima.sim( model = list(order = c¢(3,1,1), ar = c(0.4, 0.2, 0.2), ma = 0.5), n = :

df < ur.pp(y, type = "Z-tau", model = "trend")

BHHRHHARHHR AR HR L HRBH R R HH R R LRI
# Phillips—Perron Unit Root Test #
BHHRHHARHHR AR HR L HRBH R R HH R R LRI

Test regression with intercept and trend
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Discussion

e Both ADF and PP test the null of a unit root against the alternative of stationarity
e Unit root tests may have low power against relevant alternatives
e Useful to perform tests of the null of stationarity as well as tests of the null of a unit

root.
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Kwiatkowski-Phillips—Schmidt-Shin (KPSS) Test

Kwiatkowski, Phillips, Schmidt and Shin (1992) device a test under the null of stationarity

Suppose the series can be decomposed into a random walk and a staionary error
Yt = Wt + Uy,

where Aw; = v; for some v ~ 3d(0, 03) and uy = C(L)e; for € ~ z’z’d(O,az).
Null hypothesis Hyp : 02 = 0

o under which w; = wg become a constant determined by the initial value

o the regression is thus 4y = wg + u¢ (intercept only)
Alternative Hy : 03 > (: the regression is a linear deterministic trend plus a random
walk.

The KPSS test statistic

KPSS = — i(iaﬁ{:’fi [V (r)"dr  under H,

T2j\2 =1 =1 = O0,(T/p) —p oo under H;

where V() = W (r) — rW (1) is a standard Brownian bridge, W(r) is a standard 7/ / &



Kwiatkowski-Phillips—Schmidt-Shin (KPSS) Test

e The baseline setup can be extended to include drift and trend
Yr = i+ 0t + wy + uy,

e Under the null hypothesis Hy : o2 = 0, the regression is trend stationary
Yt = Uy + 0t + us where wy is absorbed in the drift

e Regress y; on a constant and a time trend to obtained residuals u;

= fol [Va (r)]’dr  under H

KPSS
{ = O,(T/p) —, 00 under H;

where Va(r) is a second-level Brownian bridge defined by

Va(r) =W (r) + (2r — 37°2) W (1) + (—6r+ 6r2) /1 W (s)ds
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Kwiatkowski-Phillips—Schmidt-Shin (KPSS) Test

y

ur.kpss(y, type = "tau", lags = "short") > summary()

# 8 B F FE % B B EE R OH

e The KPSS test can also be implemented in the urca package

<« arima.sim( model = list(order = c(3,1,1), ar

begugigngrggrggig g gy iy iy
# KPSS Unit Root Test #
begugigngrgrgrggig g g gy iy iy

Test 1s of type: tau with 7 lags.

Value of test-statistic 1s: 1.7178

Critical value for a significance level of:

10pct 5Spct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216

c(0.4, 0.2, 0.2), ma

0.5), n =
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Alternative package: tseries

o Phillips-Perron (PP) Test
o tseries::pp.test(x)
o Augmented Dickey-Fuller (ADF) Test

o tseries::adf.test(x)
o Kwiatkowski-Phillips-Schmidt=Shin (KPSS) Test

o tseries::kpss.test(x)
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Bubble Testing



Bubble Testing

The alternative hypothesis of conventional unit root tests is the stationary regime

e Financial bubbles and crisese have been witnessed in history: Financial crises often
preceded by asset market bubbles

e How to detect bubbles?

e Essentially, want to test the null hypothesis: p = 1 (unit root) versus alternative

hypothesis: p > 1 (explosive)

Past practice

 Diba and Grossman (1989):
o unit-root test on first differenced price level ( Ap; )
o cointegration test on stock price ( p; ) and dividend series ( d; )
o found no evidence of bubbles in historical data

e Evans (1991)

o showed standard tests fail to detect explosive bubbles due to periodic collapse % | 88



Bubble Testing

Phillips, Wu and Yu (2011) Approach

o Applied right-tailed augmented Dickey-Fuller (ADF) test
e Used forward recursive rolling windows to improve power
o Bubble is a transient phenomenon.
e Found strong evidence of explosive characteristics in p¢ for 1990s data

e Cannot deal with multiple bubbles

Phillips, Shi and Yu (2015, PSY) Approach

« Proposed generalized sup ADF test (GSADF)
o Allows flexible starting and ending points for rolling windows

e Uses recursive backward regression technique for date stamping

e Using long historical monthly data, identify three big historical bubbles: 1890’s, 1929, and

2001
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PSY Test

Test the existence of exuberance behavior

e Rolling window:starting from rﬁh fraction of the sample and ending at the 'rgh fraction
k .
Ayt — a’rl,""z + Brl,rzyt—l + Z ?p;"l,’l"szt—’L‘ —l_ Et
i=1

e ADF statistic based on the regression is denoted by ADF,?,

o Generalized sup ADF test statistic (varying both the starting and the ending point)

GSADF (ro) = sup {ADF;*}
ro€lro,1]
r1€[0,ro—7¢]

e Limiting distribution under the null
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PSY Test

Date-stamping Strategies

e Backward SADF test: performs a sup ADF test on a backward expanding sample

sequence where the endpoint of each sample is fixed at 7o,

BSADF,, (r0) = sup ADEF,?
r1€[0,r2—70]
 compare BSADF,,(rg) to the critical value of the sup ADF statistic based on |T'rs ]
observations for each ry € [rg, 1]

F. = inf {rz : BSADF,,(rg) > scv,@T}

ro€lro,1]

Fp= inf {rz : BSADF,, (rg) < scvff}
ro€lre+0log(T)/T,1]

where scvff is the 100(1 — Br)% critical value of the sup ADF statistic based on

| T'rs | observations.
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Discussion

The test statistic is based on ADF test. Take into consideration of the multiple testing

Issue

Reduced form by nature

Work as a real time monitoring system

In use in central banks
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Implementation PSY Test

e BubbleTest based on the MultipleBubbles package

o A wrapper with date-stamping function and visualization

12
The 90% critical value sequence (left axis)

— The backward SADF statistic sequence (left axis)
The S&P 500 index (right axis)

o

!
s

Wy,

2000 2004 2009 2013
Date

e Recent R package psymonitor
o |nstall from Github source

e Computationally intensive due to Monte Carlo simulation

2018

3000

2000

1000
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https://github.com/zhan-gao/BubbleTest
https://github.com/itamarcaspi/psymonitor
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