
Chapter 1

Basics of Causal Inference

Zhan Gao, February 11, 2026

Adapted from Zhentao Shi’s lecture notes and heavily dependent on Wager (2025).

1.1 Potential Outcome Framework

This a thought experiment. An individual i has two potential outcomes Yi(1) and Yi(0),

and the inividual treatment effect is the difference ∆i = Yi(1)− Yi(0). However, no one can

step into the same river twice. One and only one of the potential outcomes will be realized,

and therefore ∆i is unobservable. Given the treatment status Di ∈ {0, 1}, in reality what

we can be observed is the realized outcome

Yi = Yi(Di) = DiYi(1) + (1−Di)Yi(0). (1.1)

Stable Unit Treatment Values Assumption. (1.1) is often refered in the literature

as the Stable Unit Treatment Values Assumption (SUTVA) assumption, that assumes that

the treatment on one individual does not interfere the outcome of others. SUTVA may be

questionable in the presence of interference through social interactions, for example see Leung

(2022). In this note, we maintain the SUTVA assumption, and for now suppres subscript i

for simplicity.

We want to use the observable Y to learn the average treatment effect (ATE)

ATE := E[∆] = E[Y (1)]− E[Y (0)].

Randomized controlled trials. If the treatment is randomly assigned by flipping a coin
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(the coin does not need to be even), then(
Y (1)

Y (0)

)
⊥ D. (1.2)

This is the simplest framework for identifying causal effects, as well as the most reliable level

of proof in terms of interval validity. Abadie and Cattaneo (2018) refer to RCTs as the “gold

standard”.

Characterization of ATE. (1.2) implies

E [Y |D = 1] = E [DY (1) + (1−D)Y (0)|D = 1] = E [Y (1)|D = 1] = E [Y (1)] .

where the last equality holds by randomized treatment assignment. Since (Y,D) are observ-

able, the LHS is operational. Independence between Y (1) and D ensures that the conditional

expectation E [Y (1)|D = 1] equals the unconditional expectation E[Y (1)]. Similarly,

E [Y |D = 0] = E [Y (0)|D = 0] = E[Y (0)].

Under RCT, we have an operational formula for ATE:

ATE := τ = E [Y |D = 1]− E [Y |D = 0] .

Given the data, we mimic the population average to compute

ÂTE := τ̂ =
1

n1

∑
{i:Di=1}

Yi −
1

n0

∑
{i:Di=0}

Yi

where n1 =
∑n

i=1 1{Di = 1} and n0 =
∑n

i=1 1{Di = 0}. This is often refered as the

difference-in-means estimator.

The above approach uses conditioning, which is intuitive. There is an alternative, yet

equivalent way to ATE, using only unconditional quantities. Notice that

DY = D2Y (1) +D(1−D)Y (0) = DY (1)

since for either D ∈ {0, 1}, we have D2 = D and D(1 − D) = 0. Again, Y depends on D

but Y (1) is independent of D, and therefore

E [DY ] = E [DY (1)] = E [D]E[Y (1)] = Pr [D = 1]E[Y (1)]
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and therefore

E [Y (1)] =
E [DY ]

Pr [D = 1]
=

E [I(D = 1)Y ]

Pr [D = 1]

if Pr [D = 1] ̸= 0. The denominator Pr [D = 1] is called the propensity score: the probability

that a person is assigned into the treatment group.

Similarly, if Pr [D = 0] ̸= 0 we have

E [Y (0)] =
E [(1−D)Y ]

Pr [D = 0]
=

E [I(D = 0)Y ]

Pr [D = 0]
.

Therefore, if Pr [D = 1] ∈ (0, 1) the ATE is

ATE =
E [DY ]

Pr [D = 1]
− E [(1−D)Y ]

Pr [D = 0]
. (1.3)

ATE is the difference of the two ratios.

Given data, we can compute E [DY ] /Pr [D = 1] as

(
∑n

i=1DiYi)/n

n1/n
=

∑n
i=1DiYi
n1

=
1

n1

∑
{i:Di=1}

Yi.

It is easy to see that, the sample version is the same either we compute via the conditioning

or the propensity score. Their equivalence is analogous to the fact that the conditional

density can be written as the ratio of the joint density and the marginal density.

Theorem 1 (Wager (2025) Theorem 1.2). Suppose (Yi(1), Yi(0)) are i.i.d. draws from some

super-population P. Treatments are assigned based on a Bernoulli trial:

Di
i.i.d.∼ Bern(π), 0 < π < 1.

Then
√
n (τ̂ − τ)

d→ N
(
0,
σ2
1

π
+

σ2
0

1− π

)
, (1.4)

where σ2
d := Var (Yi (d)) for d ∈ {0, 1}.

1.1.1 Stratification

At a granular level, the researcher also observe some confounding factor (causal inference

term) (alternatively, in plain stat term it is called covariate) X.
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The conditional ATE (CATE)

τ (x) := ATE(x) = E[∆|X = x] = E[Y (1)|x]− E[Y (0)|x]

can vary across different realizations of X. For example, an vaccine is more effective to

children than adults. In RCT, if the random treatment assignment is regardless of the age

group, we have (Y (1), Y (0)) depend X, while D⊥X, then we maintains (1.2).

Stratification. For different age groups, we may want to use different treatment assignment

probability. For example, we put 70% of the children into the treatment, while we put 40% of

the adults into the treatment. In this case, D also depends on X. RCT can be implemented

in a stratified approach: inside each age group, the researcher runs a RCT by flipping a coin

to assign treatment.

To formalize the discussion, suppose the covariate X ∈ X takes discrete values, where

|X | = m <∞. Assume further that(
Y (1)

Y (0)

)
⊥ D

∣∣X = x for all x ∈ X . (1.5)

Caveat on aggregation. Notice that when D depends on x,

E {E [Y |D = d, x]} ̸= E [Y |D = d]

and thus

ATE ̸= E [Y |D = 1]− E [Y |D = 0] .

With that being said, the difference-in-means estimator

τ̂ =
1

n1

∑
{i:Di=1}

Yi −
1

n0

∑
{i:Di=0}

Yi

no longer provides a proper estimator for ATE.

Example 1. (Wager, 2025, Chapter 2, p.17) We are interested in evaluating whether pro-

viding teenagers with cash incentives can discourage smoking. To this end, an experiment

was carried out in two locations: Palo Alto, CA, and Geneva, Switzerland.

Palo Alto Non-Smoker Smoker Ratio (Smoker / Total)

Treatment 152 5 5 / (152 + 5) = 0.032

Control 2362 122 122 / (2362 + 122) = 0.049
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Geneva Non-Smoker Smoker Ratio (Smoker / Total)

Treatment 581 350 350 / (581 + 350) = 0.376

Control 2278 1979 1979 / (2278 + 1979) = 0.465

The results indicate that the treatment reduces the smoking rate among teenagers in both

locations. However, looking at aggreate data can be misleading:

Palo Alto + Geneva Non-Smoker Smoker Ratio (Smoker / Total)

Treatment 733 401 401 / (733 + 401) = 0.354

Control 4640 2101 2101 / (4640 + 2101) = 0.312

This echos the Simpson’s paradox. Intuitively, we need to re-weight the two sample taking

into consideration that Genevans are both more likely to be treated and more likely to smoke.

This results in the following estimation:

τ̂PA =
5

152 + 5
− 122

2362 + 122
≈ −1.7%

τ̂GVA =
350

350 + 581
− 1979

2278 + 1979
≈ −8.9%

τ̂ =
2641

2641 + 5188
τ̂PA +

5188

2641 + 5188
τ̂GVA ≈ −6.5%

Stratified Estimation. Example 1 suggests we ought to estimate the ATE by aggregating

the estimates of CATE by

τ̂S =
∑
x∈X

nx

n

 1

nx1

∑
{Xi=x,Di=1}

Yi −
1

nx0

∑
{Xi=x,Di=0}

Yi


︸ ︷︷ ︸

τ̂(x)

=
∑
x∈X

nx

n
τ̂ (x) , (1.6)

where nx = |{i : Xi = x}| and nnd = |{i : Di = d,Xi = x}|.

Theorem 2 (Wager (2025) Theorem 2.1). Suppose (Yi(1), Yi(0), Di, Xi) ∼i.i.d. P for some

super-population P. Xi ∈ X where |X | = m < ∞. E
(
Yi (d)

2 |Xi

)
< ∞. Assume stratified

design (1.5) and SUTVA hold, and there is nontrivial treatment variation in X so that

p (x) = Pr (Di = 1|Xi = x) ∈ (0, 1) for all x ∈ X . Then

√
n
(
τ̂S − τ

)
= N

(
0, V S

)
,

where

Var (τ (Xi)) + E
[
σ2
1 (Xi)

p (Xi)
+

σ2
0 (Xi)

1− p (Xi)

]
. (1.7)

For a straightforward proof, see Wager (2025, pp. 19–20).
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1.1.2 Inverse Propensity Weighting

The intuition from the stratified design can be in general formalized as the unconfound-

edness condition (or conditional independence assumption):(
Y (1)

Y (0)

)
⊥ D

∣∣X. (1.8)

Qualitatively, (1.8) requires that we have measured enough covariates to capture the depen-

dence between treatment assignments and potential outcomes so that D cannot “peek” at

(Y (1), Y (0)). x ∈ X is now allowed to be either discrete or continuous. When X is continu-

ous, we cannot estimate τ̂(x) for each x ∈ X as in the stratified design, since there will not

be enough observations at each value of x to compute the ATE reliably.

Characterization of ATE via Inverse Propensity Weighting. We take another route

to do the computation via the propensity score as for (1.3). Denote the (conditional) propen-

sity score as p(x) = Pr [D = 1|X = x]. Then

τ (x) := ATE(x) =
E [DY |x]
p(x)

− E [(1−D)Y |x]
1− p(x)

, (1.9)

given that 0 < p(x) < 1. Compared to (1.18), the (1.9) makes the role of p(x) explicit. If

we use (1.9) instead of (1.18), then

ATE = E[ATE(x)] = E
[
E [DY |x]
p(x)

− E [(1−D)Y |x]
1− p(x)

]
, (1.10)

where the different p(x) is explicitly accounted. Although (1.19) and (1.10) are mathemati-

cally equivalent, when we use the sample average to mimic the population average, (1.10) is

easier to work with as it conditions only on the random variable X, but not D.

The unconfoundedness condition (1.8) seems impractical at the first glance. however,

as shown in Rosenbaum and Rubin (1983), the propensity score can work as a dimension

reduction tools which can make (1.8) more tractable: If (1.8) holds, then(
Y (1)

Y (0)

)
⊥ D

∣∣∣∣p(X). (1.11)

It suffices to control for p(X) rather than X to account for the non-random treatment

assignment. It is easy to verify that (Wager, 2025, p.21)

Pr [D = d | Y (0), Y (1), p (X)] = Pr [D = d | X] . (1.12)
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Suppose the functional form of p(x) is known, and we can use the inverse propensity

weighting (IPW) estimator

τ̃ IPW =
1

n

n∑
i=1

[
DiYi
p(Xi)

− (1−Di)Yi
1− p(Xi)

]
. (1.13)

Notice

E
[
DiYi
p(Xi)

]
= E

{
E

[
DY

p(X)

∣∣∣∣∣X
]}

= E
{

1

p(X)
E [DY |X]

}
= E

{
1

p(X)
E [DY (1)|X]

}
= E

{
E [D|x]
p(X)

E [Y (1)|X]

}
= E {E [Y (1)|X]} = E [Y (1)] ,

where we apply the unconfoundedness condition (1.8) from the first to the second line, and

similarly

E
[
(1−Di)Yi
1− p(Xi)

]
= E [Y (0)] .

We have τ̃ IPW is an unbiased estimator of ATE:

E
[
τ̃ IPW

]
= E[Y (1)]− E[Y (0)] = ATE.

Theorem 3. Suppose (Yi(1), Yi(0), Di, Xi) ∼i.i.d. P. Assume the unconfoundedness condition

(1.8) and SUTVA hold. E
(
Yi (d)

2 |Xi

)
<∞ and there η > 0 s.t.

ϵ < p(x) < 1− ϵ for all x ∈ X . (1.14)

Then,
√
n
(
τ̃ IPW − τ

)
= N

(
0, V IPW

)
,

where

V IPW = Var (τ (Xi)) + E
[
σ2
1 (Xi)

p (Xi)
+

σ2
0 (Xi)

1− p (Xi)

]
+ E

[
(µ0 (Xi) + (1− p (Xi)) τ (Xi))

2

p (Xi) (1− p (Xi))

]
.

(1.15)

Refer to Wager (2025, p.23 - 24) for a proof.

Overlap Assumption. (1.14), together with the finite second moments of the outcomes,

ensures all moments involves in (1.15) are finite. This is known as the overlap assumption. In

general, we need to guarantee there is enough randomness in treatment assignment to justify

the treatment effect estimation, i.e. Di cannot be perfectly predicted by Xi. Technically,
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if we strengthen the finite second moment assumption to assume outcomes are uniformly

bounded, then (1.14) can be relaxed to

E
(

1

p (Xi) (1− p (Xi))

)
<∞,

which often referred as weak overlap condition.

Experimental v.s. observational studies. There are two conceptually distinct ways in

which potential outcomes can satisfy (1.5). The foregoing discussion primarily addressed

the case where data arise from an experiment employing stratified treatment assignment. In

this experimental setting, nature first draws {Yi(0), Yi(1), Xi} ∼ P. The experimenter then

assigns treatment according to Di ∼ Bern (p(Xi)), where the propensity score p(·) is deliber-
ately chosen and thus known. Alternatively, we may encounter data (Yi(1), Yi(0), Di, Xi) ∼ P
that do not originate from a controlled experiment; in such cases, the unconfoundedness as-

sumption is invoked to enable causal identification. These latter scenarios are commonly

referred to as observational studies or natural experiments. In such settings, justifying the

unconfoundedness assumption is often challenging. Furthermore, the propensity score p(x)

is unknown to the researcher and must be estimated from the data.

Feasible IPW. In observational studies, we often don’t know the exact propensity score

p (x). To construct the feasible IPW estimator, we need to plug in the estimates of the

propensity score, p̂ (x), in (1.13):

τ̂ IPW =
1

n

n∑
i=1

(
DiYi
p̂ (Xi)

− (1−Di)Yi
1− p̂ (Xi)

)
. (1.16)

In practice, estimating the propensity score accurately can be difficult. Theoretical guar-

antees as in Theorem 3 can break down if we plug in generic estimates of the propensity

without further underlying assumptions. Robustness of methods to errors in the propensity

scores is important.

Inefficiency of τ̃ IPW. Let’s revisit the stratified design, and compare the asymptotic vari-

ance of the IPW estimator τ̃ IPW and the stratification estimator τ̂S, i.e. V S in (1.7) and

V IPW in (1.15):

V IPW = V S + E

[
(µ0 (Xi) + (1− p (Xi)) τ (Xi))

2

p (Xi) (1− p (Xi))

]
︸ ︷︷ ︸

≥0

≥ V S,

i.e. τ̃ IPW is strictly less efficient than τ̂S unless µ0 (Xi)+(1− p (Xi)) τ (Xi) = 0 almost surely.



CHAPTER 1. BASICS OF CAUSAL INFERENCE 9

Zooming into τ̂S, it turns on τ̂S is actually the feasible IPW estimator

τ̂S = τ̂ IPW,

where p̂ (x) = nx1

nx
. Surprisingly, this yields the seemingly paradoxical result that the oracle

IPW estimator is actually less efficient than the feasible IPW estimator when X is discrete.

Hirano et al. (2003) formalize this insight for the case of continuous covariates, demonstrating

that the IPW estimator, based on a nonparametrically estimated propensity score obtained

from a sufficiently smooth, growing sieve approximation, attains the semiparametric effi-

ciency bound.

Example 2 (Missing-at-random with binary X: why p̂ can reduce variance). We consider

the missing-at-random setup used in Section 3 of Hirano et al. (2003). Let X ∈ {0, 1} be a

binary covariate, D ∈ {0, 1} indicate whether Y is observed, and suppose the (observation)

propensity score is

p(x) = Pr(D = 1 | X = x) =
1

2
,

and D ⊥ Y | X. The outcome satisfies the structural equation

Y = µ(X) + ε, E[ε | X] = 0, Var(ε | X) = Var(Y | X).

The target is the population mean θ = E[Y ] = E[µ(X)].

Denote

nx =
n∑

i=1

1{Xi = x}, nx1 =
n∑

i=1

Di 1{Xi = x}.

Using the true propensity score yields

θ̃ =
1

n

n∑
i=1

DiYi
p(Xi)

,

which is the Horvitz–Thompson estimator (Horvitz and Thompson, 1952). To see where

inefficiency comes from, decompose the estimator using Yi = µ(Xi) + εi:

θ̃ =
1

n

n∑
i=1

Diµ(Xi)

p(Xi)
+

1

n

n∑
i=1

Diεi
p(Xi)

=
1

n

∑
x∈{0,1}

µ (x)

∑n
i=1Di1 {Xi = x}

p (x)
+

1

n

n∑
i=1

Diεi
p(Xi)
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=
1

n

∑
x∈{0,1}

µ (x)
nx1

p (x)︸ ︷︷ ︸
:=ñx

+
1

n

n∑
i=1

Diεi
p(Xi)

=
∑

x∈{0,1}

nx

n
µ (x) +

1

n

∑
x∈{0,1}

(ñx − nx)µ (x) +
1

n

n∑
i=1

Diεi
p(Xi)

(1.17)

• The first term in (1.17) represents the “full-sample” mean of µ(X), which can be

further expanded as

∑
x∈{0,1}

nx

n
µ(x) =

1

n

n∑
i=1

µ(Xi)

=
∑

x∈{0,1}

Pr(X = x)µ(x) +
∑

x∈{0,1}

(nx

n
− Pr(X = x)

)
µ(x)

= θ +
∑

x∈{0,1}

(nx

n
− Pr(X = x)

)
µ(x).

This term appropriately re-weights each group defined by x ∈ {0, 1} in the finite

sample according to its sample fraction nx

n
. It is centered at θ and its contribution

to the variance arises solely from sampling variability in nx, which in finite samples

follows a binomial distribution with parameters n and Pr(X = x).

• The second term in (1.17) arises because the oracle propensity score does not guarantee

any finite-sample balance. Due to the randomness of missingness within each group,

the observed subsample may over- or under-represent a group, as captured by the

discrepancy ñx−nx. This imbalance introduces additional variation into the estimator.

• The third term in (1.17) contains the idiosyncratic noises.

we can compute the variance of the estimator,

nVar
(
θ̃
)
= n

[
E
(
Var

(
θ̃ | X

))
+Var

(
E
(
θ̃ | X

))]
= Var (µ (X)) + E

(
Var (Y | X)

p (X)

)
+ E

(
1− p (X)

p (X)
µ (X)2

)
• The term Var (µ (X)) is the variance contribution of the mean of the outcome.

• The term E
(

Var(Y |X)
p(X)

)
represents the irreducible idiosyncratic noise ε.

• The term E
(

1−p(X)
p(X)

µ (X)2
)
reflects the variance contribution of the imbalance term.
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Note that in (1.17), replacing p (x) by the estimated propensity score p̂ (x) = nx1

nx
leads to

θ̂ =
1

n

n∑
i=1

DiYi
p̂(Xi)

.

Now n̂x = nx1

p̂(x)
= nx, the imputed weights exactly balance the realized subsamples, so we

can follow the calculation in (1.17) and get Therefore,

θ̂ =
1

n

n∑
i=1

µ(Xi) +
1

n

n∑
i=1

Diεi
p̂(Xi)

,

in which the imbalance term cancels out. By the standard CLT argument, we can show1

√
nθ̂

d→= N
(
0,Var (µ (X)) + E

(
Var(Y | X)

p (X)

))
.

Thus the efficiency gain is exactly the removal of the E
(

1−p(X)
p(X)

µ (X)2
)
component.

1.1.3 Doubly Robust Estimator

Characterization of ATE via Outcome Regression. The CATE is made operational

via

ATE(x) = E [Y (1)|X = x]− E [Y (0)|X = x]

= E [Y (1)|D(x) = 1, x]− E [Y (0)|D(x) = 0, Xi = x]

= E [Y |D = 1, x]− E [Y |D = 0, x] . (1.18)

Inside each age group, we just need to compute the difference between the averages of those

treated and those untreated, respectively. Now, suppose the researcher has CATE at hand,

and she wants to aggregate the CATE across subgroups into an overall ATE. Then by the

law of iterated expectations:

ATE = E [ATE(X)] = E {E [Y |D = 1, X]− E [Y |D = 0, X]} = E [µ1 (X)− µ0 (X)] , (1.19)

1Observe that θ̂ =
∑

x∈{0,1}
nx

nx1

(
1
n

∑n
i=1 Di1{Xi = x}εi

)
. To analyze the asymptotic distribution, apply

the Central Limit Theorem (CLT) separately to each term within the parentheses for x ∈ {0, 1}, and then
invoke Slutsky’s theorem to conclude.
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where µd (x) = E [Y |D = d,X = x]. This leads to a simple and consistent (but not necessarily

optimal) nonparametric regression estimator for ATE:

τ̂REG =
1

n

n∑
i=1

(µ̂1 (Xi)− µ̂0 (Xi)) , (1.20)

where µ̂j (·) is a consistent nonparametric estimators for µj (·).

Augmented Inverse Propensity Weighting (AIPW). Given the two characterizations,

ATE can be estimated by either the IPW estimator (1.16) or the outcome regression estimator

(1.20). Both estimators require the estimation of nuisance components (p (·) in τ̂ IPW and

µd (·) in τ̂REG). Consequently, the validity of these estimators relies heavily on the accuracy

with which these nuisance components are estimated. Though the original motivation was

mainly theoretical relying the semiparametric efficiency theory2, it is natural to ask whether

it is possible to combine both strategies to mitigate the bias and improve efficiency; see brief

discussion in Ding (2024, Section 12.2) and references therein. This leads to the augmented

inverse propensity weighting (AIPW) estimator (Robins et al., 1994),

τ̂AIPW =
1

n

n∑
i=1

[
µ̂1 (Xi)− µ̂0 (Xi) +

Di (Yi − µ̂1 (Xi))

p̂(Xi)
− (1−Di) (Yi − µ̂0 (Xi))

1− p̂(Xi)

]
(1.21)

The AIPW estimator can be interpreted as first making a best effort at estimating τ by

modeling the conditional means µ0(x) and µ1(x). Then, it adjusts for any remaining bias

in the estimated conditional means µ̂d(x) by applying IPW to the regression residuals. Sta-

tistically, AIPW not only inherits the robustness properties of both the regression and IPW

estimators, but it can also improve upon both.

Weak Double Robustness. τ̂AIPW is consistent if either µ̂d (x) are consistent or p̂ (x) is

consistent. To see this, first consider the case where µ̂d (x) is consistent, i.e., µ̂d (x) ≈ µd (x).

Then,

τ̂AIPW =
1

n

n∑
i=1

(µ̂1(Xi)− µ̂0(Xi))︸ ︷︷ ︸
=τ̂REG

+
1

n

n∑
i=1

(
Di

p̂(Xi)
(Yi − µ̂1(Xi))−

1−Di

1− p̂(Xi)
(Yi − µ̂0(Xi))

)
︸ ︷︷ ︸

≈ mean-zero noise

,

because E (Y − µ̂d (X) | X,D) ≈ 0 under unconfoundedness, which zeros out the estimation

2See Bodhisattva Sen’s note for a accessible introduction to semiparametric efficiency theory, and refer
to Bickel et al. (1993) for the rigorous treatment.

https://sites.stat.columbia.edu/bodhi/Talks/SPThNotes.pdf
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error in the propensity score. Conversely, suppose p̂ (x) is consistent, i.e. p̂ (x) ≈ p (x), then

τ̂AIPW =
1

n

n∑
i=1

(
DiYi
p̂ (Xi)

− (1−Di)Yi
1− p̂ (Xi)

)
︸ ︷︷ ︸

=τ̂ IPW

+
1

n

n∑
i=1

(
µ̂1 (Xi)

(
1− Di

p̂ (Xi)

)
− µ̂0 (Xi)

(
1− 1−Di

1− p̂ (Xi)

))
︸ ︷︷ ︸

≈ mean-zero noise

,

since E (1−D/p̂ (X) | x) ≈ 0. Again, this can zero out the estimation error in the outcome

regressions even if µ̂d (x) is inconsistent.

Remark 1. Weak robustness ensures only the consistency of τ̂AIPW. If both µ̂d(x) and p̂(x)

are consistently estimated using appropriate nonparametric or machine learning methods,

then weak double robustness does not, by itself, provide further advantages. In practice,

however, we are often interested not just in consistency, but also in the rate of convergence

and in uncertainty quantification. Modern machine learning algorithms used to estimate

µd(x) and p(x) often cannot achieve the parametric
√
n rate but rather slower rate like

n1/4 unless strong assumptions are imposed. This natural question is how robust is the

performance of the AIPW estimator to the quality of the nuisance estimates µd(x) and p(x),

compared to the oracle AIPW estimator in which both nuisance components are known.

Oracle AIPW. The oracle AIPW estimator is constructed with true outcome means µ1(x)

and µ0(x) and propensity score p(x):

τ̃AIPW =
1

n

n∑
i=1

[
µ1(Xi)− µ0(Xi) +

Di (Yi − µ1(Xi))

p(Xi)
− 1−Di (Yi − µ0(Xi))

1− p(Xi)

]
. (1.22)

Theorem 4 (Wager (2025) Proposition 3.1). Under the assumptions of Theorem 3,

√
n
(
τ̃AIPW − τ

)
= N (0, V ∗) ,

where

V ∗ = Var (τ (Xi)) + E
[
σ2
1 (Xi)

p (Xi)
+

σ2
0 (Xi)

1− p (Xi)

]
. (1.23)

It is easy to show the result by applying central limit theorem; see Wager (2025, Propo-

sition 3.1) for a proof.

Remark 2. Note that V ∗ = V S, but under general conditions beyond stratified design with

discrete covariates. In fact, V ∗ is the efficiency bound for nonparametric ATE estimation
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under unconfoundedness. Wager (2025, Theorem 3.4) provides a proof sketch using the

argument of Chamberlain (1992). Given τ̃AIPW achieves the optimal asymptotic behavior,

for any other operational estimator, such as τ̂AIPW, we aim to establish the asymptotic

equivalence that
√
n
(
τ̂ − τ̃AIPW

)
= op (1).

Population bias decomposition of τ̂AIPW . Let η := (µ0, µ1, p) collect nuisance functions

and let η0 := (µ0,0, µ1,0, p0) denote the truth, where

p0(x) := Pr(D = 1 | X = x), µd,0(x) := E(Y | D = d,X = x), d ∈ {0, 1}.

Let W := (Y,D,X). Define the AIPW score

ψ(W ; η) := µ1(X)− µ0(X) +
D

p(X)

(
Y − µ1(X)

)
− 1−D

1− p(X)

(
Y − µ0(X)

)
, (1.24)

and the associated moment function

m(W ; τ, η) := ψ(W ; η)− τ. (1.25)

Under unconfoundedness and overlap, the target τ0 := E(Y (1)−Y (0)) satisfies the population

moment condition

E
[
m(W ; τ0, η0)

]
= 0. (1.26)

Remark 3. Note that τ̂AIPW = 1
n

∑n
i=1 ψ (Wi; η̂) and τ̃

AIPW = 1
n

∑n
i ψ (Wi; η0).

Remark 4. In the following discussion, we first establish identities for fixed (non-random)

functions η̃. When we later substitute an estimated nuisance η̂ = η̂(Dn) constructed from a

sample Dn := {Wi}ni=1, the same identities are used in the following precise sense: let W ⋆ =

(Y ⋆, D⋆, X⋆) be an independent draw from the population, W ⋆ ⊥ Dn; then all “population”

expectations involving η̂ should be read as conditional expectations over W ⋆ given Dn, e.g.

E
[
m(W ; τ0, η̂)

]
means E

[
m(W ⋆; τ0, η̂(Dn)) | Dn

]
.

This distinction matters because if η̂ is trained on the full sample, then η̂(Xi) may depend on

(Yi, Di) through the fitting procedure; hence one generally cannot treat η̂(Xi) as measurable

w.r.t. σ(Xi) in in-sample conditional expectations. Cross-fitting introduced later restores

the needed conditional independence fold-by-fold.

Fix η̃ := (µ̃0, µ̃1, p̃) with ε ≤ p̃(X) ≤ 1−ε a.s. Define δd(X) := µ̃d(X)−µd,0(X). Because

µ̃d(X) and p̃(X) are σ(X)-measurable (they are fixed functions of X), we may condition on
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X and pull them out of conditional expectations.

E
[

D

p̃ (X)
(Y − µ̃1 (X))

∣∣∣∣X] = 1

p̃ (X)
E [DE (Y − µ̃1 (X) | D,X) |X]

=
1

p̃ (X)
E [D (µ1 (X)− µ̃1 (X)) |X]

=
p0 (X)

p̃ (X)
(µ1 (X)− µ̃1 (X)) = −p0 (X)

p̃ (X)
δ1 (X) ,

and similarly

E
[

1−D

1− p̃ (X)
(Y − µ̃0 (X))

∣∣∣∣X] = −1− p0 (X)

1− p̃ (X)
δ0 (X) .

Substituting these into (1.24) gives

E [ψ (W ; η̃) |X] = µ̃1 (X)− µ̃0 (X)− p0 (X)

p̃ (X)
δ1 (X) +

1− p0 (X)

1− p̃ (X)
δ0 (X)

= µ1 (X)− µ0 (X) +

(
1− p0 (X)

p̃ (X)

)
δ1 (X) +

(
1− p0 (X)

1− p̃ (X)
− 1

)
δ0 (X) .

Simplying the above, we obtain the exact conditional representation

E [ψ (W ; η̃) |X] = µ1,0 (X)−µ0,0 (X)+(p̃ (X)− p0 (X))

{
µ̃1 (X)− µ1,0 (X)

p̃ (X)
+
µ̃0 (X)− µ0,0 (X)

1− p̃ (X)

}
.

Taking expectations over X yields the population bias identity

E [ψ (W ; η̃)]− τ0 = E
[
(p̃ (X)− p0 (X))

{
µ̃1 (X)− µ1,0 (X)

p̃ (X)
+
µ̃0 (X)− µ0,0 (X)

1− p̃ (X)

}]
. (1.27)

Then,

E
[
m(W ; τ0, η̃)

]
= E

[(
p̃(X)− p0(X)

){δ1(X)

p̃(X)
+

δ0(X)

1− p̃(X)

}]
. (1.28)

Equation (1.28) immediately yields:

E[m(W ; τ0, η̃)] = 0 if either µ̃d = µd,0 a.s. for d = 0, 1, or p̃ = p0 a.s.

This is the population version of double robustness. Moreover, (1.28) shows that, in general,

the population bias is a product of nuisance errors.

Remark 5. Even if η̂ = η̂(Dn) is estimated using the full sample (no sample splitting), the

algebra behind (1.28) remains valid conditionally for an independent draw W ⋆. Specifically,
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with W ⋆ ⊥ Dn,

E
[
m(W ⋆; τ0, η̂) | Dn

]
= E

[(
p̂(X⋆)− p0(X

⋆)
){ µ̂1(X

⋆)− µ1,0(X
⋆)

p̂(X⋆)
+
µ̂0(X

⋆)− µ0,0(X
⋆)

1− p̂(X⋆)

}∣∣∣∣Dn

]
.

(1.29)

Equation (1.29) is the precise sense in which we apply the “exact bias decomposition” when

η̃ = η̂. However, (1.29) does not justify in-sample manipulations such as E[Di/p̂(Xi) |
Xi] = p0(Xi)/p̂(Xi), because p̂(Xi) need not be σ(Xi)-measurable when trained on the same

sample.

Neyman orthogonality. For a perturbation direction h := (h0, h1, hp), define a path

ηt := η0 + th. We say the moment m(W ; τ, η) is Neyman orthogonal at (τ0, η0) if

d

dt
E
[
m(W ; τ0, ηt)

]∣∣∣∣
t=0

= 0 for all admissible directions h. (1.30)

Equivalently, the (Gateaux) derivative of η 7→ E[m(W ; τ0, η)] vanishes at η0
3.

Step 3: compute derivatives for AIPW. It is convenient to rewrite ψ as

ψ(W ; η) =
DY

p(X)
− (1−D)Y

1− p(X)
+ µ1(X)

(
1− D

p(X)

)
− µ0(X)

(
1− 1−D

1− p(X)

)
. (1.31)

From (1.25) and (1.31), note that ∂ηE[m] = ∂ηE[ψ] since τ0 is fixed.

Derivative w.r.t. µ1. Let µ1,t := µ1,0+ th1 and hold (µ0, p) = (µ0,0, p0) fixed. Then by (1.31),

ψ(W ;µ0,0, µ1,t, p0)− ψ(W ; η0) = t h1(X)

(
1− D

p0(X)

)
.

Hence

d

dt
E
[
ψ(W ;µ0,0, µ1,t, p0)

]∣∣∣∣
t=0

= E
[
h1(X)

(
1− D

p0(X)

)]
= E

[
h1(X)E

(
1− D

p0(X)

∣∣∣∣X)]
= E

[
h1(X)

(
1− E(D | X)

p0(X)

)]
= 0. (1.32)

3Refer to Luenberger (1997, Section 7.2) for formal definitions, and other chapters for textbook treatment
of foundations of functional spaces.
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Derivative w.r.t. µ0. Similarly, letting µ0,t := µ0,0 + th0 and holding (µ1, p) = (µ1,0, p0) fixed,

ψ(W ;µ0,t, µ1,0, p0)− ψ(W ; η0) = − t h0(X)

(
1− 1−D

1− p0(X)

)
,

so

d

dt
E
[
ψ(W ;µ0,t, µ1,0, p0)

]∣∣∣∣
t=0

= −E
[
h0(X)

(
1− 1−D

1− p0(X)

)]
= −E

[
h0(X)E

(
1− 1−D

1− p0(X)

∣∣∣∣X)] = 0. (1.33)

Derivative w.r.t. p. Now let pt := p0 + thp and hold (µ0, µ1) = (µ0,0, µ1,0) fixed. Using the

original form of ψ,

ψ(W ;µ0,0, µ1,0, pt) = µ1,0(X)− µ0,0(X) +
D

pt(X)

(
Y − µ1,0(X)

)
− 1−D

1− pt(X)

(
Y − µ0,0(X)

)
,

and differentiating at t = 0 yields

d

dt
ψ(W ;µ0,0, µ1,0, pt)

∣∣∣∣
t=0

= −Dhp(X)

p0(X)2
(
Y − µ1,0(X)

)
− (1−D)hp(X)

(1− p0(X))2
(
Y − µ0,0(X)

)
.

Taking expectations and conditioning on X gives

d

dt
E
[
ψ(W ;µ0,0, µ1,0, pt)

]∣∣∣∣
t=0

= −E
[
hp(X)

p0(X)2
E
(
D
(
Y − µ1,0(X)

)∣∣X)]
− E

[
hp(X)

(1− p0(X))2
E
(
(1−D)

(
Y − µ0,0(X)

)∣∣X)] . (1.34)

Now, by the law of iterated expectations,

E
(
D
(
Y − µ1,0(X)

)∣∣X) = E(DE(Y − µ1,0(X) | D,X)|X) = E(D · 0|X) = 0,

and similarly E((1−D)(Y − µ0,0(X)) | X) = 0. Substituting into (1.34) yields

d

dt
E
[
ψ(W ;µ0,0, µ1,0, pt)

]∣∣∣∣
t=0

= 0. (1.35)

Combining (1.32), (1.33), and (1.35), we obtain

d

dt
E
[
m(W ; τ0, η0 + th)

]∣∣∣∣
t=0

=
d

dt
E
[
ψ(W ; η0 + th)

]∣∣∣∣
t=0

= 0 for all h,
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which verifies (1.30). Hence, the AIPW moment is Neyman orthogonal at (τ0, η0).

The Taylor expansion around η0 has the form

E[m(W ; τ0, η̂)] = E[m(W ; τ0, η0)] + ∂ηE[m(W ; τ0, η)]
∣∣
η=η0

[η̂ − η0] +R2(η̂, η0), (1.36)

where R2(η̂, η0) is a second-order remainder. By (1.26), the first term is zero. By Neyman

orthogonality (1.30), the linear term is also zero. Thus,

E[m(W ; τ0, η̂)] = R2(η̂, η0), (1.37)

so any population bias from plugging in η̂ is second order.4 Indeed, the exact bias identity

applied conditionally (cf. (1.29)) yields

E[m(W ; τ0, η̂)] = E
[
(p̂(X)− p0(X))

{
µ̂1(X)− µ1,0(X)

p̂(X)
+
µ̂0(X)− µ0,0(X)

1− p̂(X)

}]
, (1.38)

again with the convention that this is a conditional population expectation when η̂ is random.

In particular, if p̂(X) ∈ [ε, 1− ε] a.s., then

|E[m(W ; τ0, η̂)]| ≤
1

ε
E [|p̂(X)− p0(X)| |µ̂1(X)− µ1,0(X) + µ̂0(X)− µ0,0(X)|] , (1.39)

and by Cauchy–Schwarz,

|E[m(W ; τ0, η̂)]| ≤
1

ε
∥p̂− p0∥L2(PX)

(
∥µ̂1 − µ1,0∥L2(PX) + ∥µ̂0 − µ0,0∥L2(PX)

)
, (1.40)

where ∥f∥L2(PX) := (E[f(X)2])
1/2

denotes the L2(PX) norm.

The AIPW estimator can be written as τ̂AIPW = Pn[ψ(W ; η̂)]. A basic decomposition is

τ̂AIPW − τ0 = (Pn − P)ψ(W ; η0) + P
[
ψ(W ; η̂)− ψ(W ; η0)

]︸ ︷︷ ︸
population bias

+(Pn − P)
(
ψ(W ; η̂)− ψ(W ; η0)

)︸ ︷︷ ︸
overfitting

.

(1.41)

The first term is the usual sampling fluctuation at the truth. By (1.38), orthogonality (and

the exact bias identity) control the second term: it is second order and vanishes if either

nuisance is correct (weak double robustness in terms of consistency), and it is op(n
−1/2) under

a product-rate condition (for root-n inference).

The subtlety is the third term in (1.41). Even if the population Neyman condition holds,

4If η̂ is data-dependent, read E[m(W ; τ0, η̂)] as E[m(W ⋆; τ0, η̂) | Dn]
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this third term can fail to be small if η̂ is estimated on the same sample used in Pn. The reason

is that ψ(·; η̂) is then a data-dependent function evaluated on the same data, so controlling

(Pn − P)fn with fn = ψ(·; η̂) − ψ(·; η0) requires strong uniform complexity conditions (e.g.

Donsker/entropy conditions) that typically fail for modern ML.

Sample Spliting and Cross-fitting. To deal with the third term in (1.41), we rely on

sample splitting and cross-fittingn to restore conditional i.i.d. structure and make the third

term negligible under mild conditions Partition {1, . . . , n} into K folds I1, . . . , IK . For each

fold k, estimate nuisances η̂(−k) using only the training sample Ick, and evaluate on the

held-out fold Ik. Define the cross-fitted AIPW estimator

τ̂ cf :=
1

n

K∑
k=1

∑
i∈Ik

ψ(Wi; η̂
(−k)). (1.42)

Let Pn,k := |Ik|−1
∑

i∈Ik be the fold-specific empirical measure and let ∆k(W ) := ψ(W ; η̂(−k))−
ψ(W ; η0). Then

τ̂ cf − τ0 =
K∑
k=1

|Ik|
n

(Pn,k − P)ψ(W ; η0) +
K∑
k=1

|Ik|
n

P[∆k(W )] +
K∑
k=1

|Ik|
n

(Pn,k − P)∆k(W ).

(1.43)

The middle term is the population bias term and is handled by the same orthogonality/product-

of-errors argument as before. The crucial point is the last term: conditional on the training

data Ick, the function ∆k(·) is fixed, and the held-out observations {Wi : i ∈ Ik} are i.i.d. and

independent of η̂(−k). Therefore, conditional on Ick,

E
[
(Pn,k − P)∆k(W ) | Ick

]
= 0,

Var
(
(Pn,k − P)∆k(W ) | Ick

)
=

Var(∆k(W ) | Ick)
|Ik|

.

In particular, using Var(Z) ≤ E[Z2],

E
[
((Pn,k − P)∆k(W ))2

∣∣Ick] ≤ 1

|Ik|
E
[
∆k(W )2 | Ick

]
. (1.44)

Thus,

(Pn,k − P)∆k(W ) = Op

(
∥∆k∥L2(P )√

|Ik|

)
. (1.45)

Consequently, if ∥∆k∥L2(P ) = op(1) (a mild stability/consistency requirement), then the last
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term in (1.43) is op(n
−1/2) when |Ik| ≍ n. This is the key technical role of cross-fitting: it

turns the difficult empirical-process term into an ordinary conditional LLN/CLT problem.

Quick summary of the key ingredients.

• Neyman orthogonality. The Neyman orthogonality condition (1.30) ensures that the

population moment has no first-order sensitivity to nuisance errors, so the population

bias is second order. For AIPW, this second-order term is exactly the product-of-errors

expression (1.38), interpreted conditionally when η̂ is random (cf. Step 0 and (1.29)).

• Cross-fitting. Orthogonality alone does not control the empirical-process/overfitting

term in (1.41) when η̂ is estimated on the same sample. Cross-fitting enforces foldwise

independence between the fitted nuisances and the evaluation observations, yielding

the variance bound (1.44) and the rate control (1.45) without imposing strong uniform

complexity (Donsker) conditions on the first-stage estimators.
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